移动机器人原理与应用(基于ROS操作系统)
上QQ阅读APP看书,第一时间看更新

1.1 移动机器人发展现状

机器人诞生之后,首先在工业领域得到了广泛应用,随着大范围移动的需求,移动机器人这一分支也逐渐产生。

工业移动机器人如图1-2所示,也就是我们常说的AGV(Automated Guided Vehicle,自动导引运输车)和AMR(Autonomous Mobile Robot,自主移动机器人),它们是目前移动机器人领域应用非常广泛的种类。比如,电商平台会利用AMR构建智能化仓库,我们购买的商品会被自主移动机器人以最快的方式分拣并送到快递员手上;我们平时邮寄包裹,在快递公司的仓库中,也是被这样的机器人快速分拣,去往不同目的地的传送带上;还有一些生产电子产品的工厂,也可以使用这样的移动机器人替代原本需要很多人力才能完成的物料搬运工作。这些移动机器人拥有众多传感器并融合智能算法,比如动态路径规划、自主躲避障碍物或行人、配合外部设备完成上下料等,这些功能可有效应对不同工业场景中的复杂需求。

图1-2 工业移动机器人

自动驾驶汽车也是一种典型的移动机器人系统,如图1-3所示。为了保证驾驶过程绝对安全,汽车上装配了非常多的传感器和极为复杂的控制算法。它可以通过多个相机、雷达、超声波传感器来实时构建周围环境的三维信息,不仅可以动态识别路面上的行人车辆、车道线、交通指示灯等,还可以安全完成超车、会车、跟车、转向等重要功能,同时面对突发状况也可以及时处理,比如躲避突然出现的车辆,礼让行人等,最终能够自动行驶入库,把我们安全顺利地送到目的地。

图1-3 自动驾驶汽车

从以上应用领域来看,目前移动机器人的研究热点集中在更为复杂场景的智能化需求:

· 环境的感知与建模:把机器人放在陌生环境中,它需要尽快熟悉环境之后才能开展工作,在扫地、送货等机器人中都会用到。

· 定位与导航:这是移动机器人的基本技能,只要机器人移动,它就需要知道自己的位置,以及如何运动到目标位置。这种行为的实现在复杂场景中并不容易,比如货架的位置挡住了原本的路径,或者突然出现的行人,都会影响机器人的定位与导航。

· 环境理解:这一点对于移动机器人来说是非常困难的,在有限的环境信息中还好处理,但是由于人类的生活环境较为复杂,比如在酒店中如何精准识别客人,或者通过已知的图像推理出来看到的物体是什么,以及如何进行操作就比较困难。

· 多机器人协同:未来机器人肯定是多样化存在的,这些机器人之间也需要沟通,这就涉及多个机器人协同,不只是两个、三个,有可能是成千上万个,比如大街上跑的都是自动驾驶汽车,那后台的调度系统一定是非常复杂的。

· 人机交互:机器人是服务于人类的,交互行为必不可少,比如我们可以和机器人语音沟通,机器人也可以通过我们的肢体或表情理解我们的指令。

针对以上研究热点,未来的移动机器人需要通过多种传感器感知环境信息,也需要一个大脑不断动态决策、规划各种功能,还需要一系列驱动装置控制执行设备,完成大脑下发的指令,缺一不可。如何高效地开发机器人,在技术层面上是非常重要的一个问题,针对这个问题,2007年一群斯坦福大学的有志青年尝试给出一个解决方案——机器人操作系统。