![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739006258-KGL96RPR0akbU8FeFzNCqXcSrJy5NFNF-0-2160254bae24d132f37032cdefbf3eed)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739006258-oJifsqo16SdNhHL0Kem8H7H28kNxUc5b-0-de5e20b7383d56d3919045e945ddb210)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739006258-8UhF46sH8EWtyTEojOtv2cor7kvUjOEl-0-292a1b9bf28187ab2038f0ba4d388a2c)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739006258-1Hx9Imdx3GMLYNh7xse6vt3qX3DaqLBf-0-6e1b9568353f70d8ae892662b1f02464)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739006258-aIax1B4yVK38lO1cnVkLHEW2c1vyZ4QX-0-fb4a62909acf98e98f537c453c2637b2)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739006258-aPLS21nexgevmYuIqi38JtAsGiTXEFWz-0-af9df1628569402df01e28aca51a252c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739006258-IAmfTF3JdE3XbWERQlOQPmkG4cUCccRQ-0-6dbda804fd06b03ad11d934ec5ec8e6e)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739006258-5DFDEUZJ6wZyApWXTcmHo0QXUUlkkoV8-0-5d2ba5759b7eb7634aacd42de0605564)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739006258-WhMMEdT5fEjqVLtCvkLTzAz1duJlvRCP-0-1055f272f2026c5ef3dfa0b2663d237d)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739006258-dfM0iGn0CzTsiNTgVxNxjxVrW1Jc22WQ-0-1c53e3993ab4ea0de6d2d248cc3eb512)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739006258-dcZ9LDEcuTYxV2eTvfvJjbBifQNFd11E-0-bf59726e1ff32f45155c7e2ea5c82dbb)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739006258-1iGoZOu3JfNGqEbTZmndIENP56vt3Qs6-0-f9e0bcb8cdd7de553725f9203a0e707a)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739006258-vij8b6JUXT9J8DKGhaDyflYbh6Sf2HLi-0-c5b289dffea36aafa06bbb7f0e50a1e2)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739006258-BbGzux7yEaKXiiRODvX4s6OcBqVEDeNH-0-8e023e0c9afee235d9fa82dc895a93ec)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739006258-eGSNPzStUMnJEY62QBGUio4iClk6TWOy-0-e1fb7a2a5cf7b13afb88411ec6ae3923)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739006258-h80m1wXFen1R2OzXPFjGIAWI14FjEn3E-0-4842730c98f8562c402b9f65ceef6969)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739006258-iGgNv4F2EByIzwrnPXbC4oxmH4HiCqcS-0-a9a0888cb1c63e7ec7206189686f73d8)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739006258-zkLLsGjWLJ1jClN7B6JrxXc121bXvSOE-0-6e386143246895e64635ea74e33787eb)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739006258-jvkn02oxHs4mXBQF0u7nXaEVAz8nBaNs-0-764c1a014171b3486bf8abf35ab993aa)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739006258-1hTQPo6gi2eDLKKo5KPDpj9d3PuYLjQ7-0-03762f1d3203dc7364ac43a0120ac55b)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739006258-HF3DbeQlqzegDndda1itLoJfp4JwGSDw-0-b5376ed1837d99099591f42cb466abc0)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739006258-qcAfFGLE85IbaX3WeogcTBtyeDyC5pBY-0-957a87000129095ff2ae84d3d10ba14c)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739006258-S4hNNhlhGBbKAtpL8I7pmOtDwVHMXa3q-0-62a273a24dae4999a0c64a0325c19924)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739006258-6ONLWcCXjTIxau09QBLMKjJgJdMnve7R-0-e3a08abf6fdcd232bcbbab8ef15feeba)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739006258-Ag3TLmKOVUB7bhQhmqmC69HuPIjS8qnr-0-48cfe8e0832a8e91bf9a8d5b417c2700)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739006258-jbZSOandayEeTR8RZdzzdsfjqjxZmIEX-0-1b5ebca5f98c281317558564d745446a)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739006258-n2eMen56mT5VOx5l03E8sC0QFA4eLkDw-0-005b4c247478575b03d14ca7e1627882)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739006258-xxAUbRrCtDI2TddmCiBMQRc3fJj9QCKa-0-f53f1267599e2791ff8d57969ec49622)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739006258-mMATbZ9ZitdecBu3NqeIRbsOjb4CZB4E-0-444b00e75725649cf635871498eecd3d)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739006258-S6JO6UwJqBC4R8Sry4Az82u3g2y1SVVW-0-39e1ca55f1525274d8866a0e76e5a4e5)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739006258-mCJ4W2EC1HR12iFFW84USz5pbnwVpYt8-0-48cad0d1c5dec335dcec9616cf46b663)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739006258-Fvq0KSfL0XFEQTjYqO5BINc92XdoKOQa-0-03acd0f69d5493e99f6c28249c94756c)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739006258-OGbTysHlA15c5xV2N4lWNGU0t33cH4UY-0-d2561f3bc7b903d7cff7b9585a966f8d)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739006258-8EepqUQDaIJZdoM5T5IM2fEoQtLc95OL-0-25307d853b4dff49492c31a3a2e6d08f)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739006258-RpoLT3t5krTkVTa3OUnMCTLuPGhEMhYk-0-66c9e7ac2b9ded44f7efb27561920ee4)
上式式表明相空间一个体积元h3相当于有一个量子态.