![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
3.2 课后习题详解
3.1 设A与B为厄米算符,则和
也是厄米算符,由此证明:任何一个算符F均可分解为
F+与F-均为厄米算符.
证明:因为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image676.jpg?sign=1739005817-S8KfOrzRqm6e26uDcpEmRhnBAzqKQMlN-0-e68daedae7474244e3cfa8b57a266a78)
即和
均为厄米算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image679.jpg?sign=1739005817-FOvS4KCaQtRLLEm5CLCGtIGphe8uVMMS-0-90b419bdc4c10d711474767ac8314d61)
而F+与F-显然均为厄米算符.
3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.
解:对于l=r×P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image681.jpg?sign=1739005817-7GBKp64ZVU8wtd67kzvh8cgejQwYlBrX-0-f5902a6218a084f25819e85551eb93f5)
同理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image682.jpg?sign=1739005817-HnXidI39812JtOxUuyV7lMCr44CNSf21-0-a5315088382d0b73e69930e7369060db)
所以是厄米算符,
对于r·P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image684.jpg?sign=1739005817-Cak3vqslzqgZXcSzsrNFpWmnQUtsBtGJ-0-43a511dc0359c1f55cb81b0447539a3d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image685.jpg?sign=1739005817-N1XPvCmpDUjbRovhImpTJrPR8cz8hFF8-0-5b47f302b7979eac9d18ba654bb33f64)
所以r·P不是厄米算符,而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image686.jpg?sign=1739005817-lyoQKYJLUq0G79md5byesit20aqevkxj-0-50d317edf327362a344f6ed0ad880bfa)
相应的厄米算符为
类似有,本身非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image689.jpg?sign=1739005817-G9uJVbFh0evLSrpYqY9Go1QddscL22iK-0-6ef6ce638c637dc3e2b3a8f4a3b320f9)
,本身也非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image691.jpg?sign=1739005817-DLbvGmPFkC94pzt5jLBvc4mt3c7cIfTz-0-abbc51d43ae99a6234d128fc27f5d873)
3.3 设F(x,p)是x和p的整函数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image692.jpg?sign=1739005817-GfnvhaD0qvQ6PkOQlFVj3G7FytfE6KPb-0-fd6a9c7f844aabdc549fc6bf45c3e3dc)
整函数是指F(x,p)可以展开成.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image694.jpg?sign=1739005817-5VT5fjfg2SbHQ8xqEtsHQmvDxzi2S5u0-0-b10363357f3152a8fef526190be8961a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image695.jpg?sign=1739005817-PnIrx2t0RZrgKg55QTFODQZy3x7S4DgS-0-7f1d46d71922af0174d944f511928359)
类似可证明
3.4 定义反对易式,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image698.jpg?sign=1739005817-qSQUJ00eC31ae0qVLmxdnAjMNS1pSWkJ-0-3837917bdd4e85fd8b08604ff0b9a55e)
证明:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image699.jpg?sign=1739005817-tvY85kXxKEKvSIJArsoErOSVKSKLpiLh-0-18a2c1ed491511cca06d9065675fa6ea)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image700.jpg?sign=1739005817-wzEgvje81mtBViEkRbPw3asPbPuWOBVv-0-6c206f74ecd5c585e6aea1841c72b197)
类似
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image701.jpg?sign=1739005817-vIDo4wgV5rMErbDKRq4rDDG3TfW8Dt3o-0-5e11652bae5252689b7b71aa4ed88c8b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image702.jpg?sign=1739005817-7sKcN0jFWmcS4rK9lmZFVswWi8uij8qG-0-e62638db8a9e55822967ec05cd64354a)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image703.jpg?sign=1739005817-NLSzAW4DJ99cwX3ly8uoiSS9xA4lkh8V-0-cda79ea29ef8da4848f753582756d4b1)
3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image704.jpg?sign=1739005817-R7IFJBFfpzSANYRIAwF78OKKxBfFq2Oh-0-608638e05ed5740702d82b246faecd9c)
α、β、γ分别取为为Levi-Civita符号,试验证
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image706.jpg?sign=1739005817-bZpwTLxUE3IUrtUuq6sLsk5nZ3YdfAAT-0-700e64d46d7a27211f15f8166bd216ec)
【证明见《量子力学习题精选与剖析》[上],4.1题】
4.1 设A、B、C为矢量算符,其直角坐标系分量为
A=(Ax,Ay,Az)=(A1,A2,A3)
等等,A、B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image707.jpg?sign=1739005817-GLD5GuoXywpRZUO7Zly2PwrVkoymyLJm-0-872101883764448c37a37b2bf6552813)
等等,试验证下列各式:
A·(B×C)=(A×B)·C (3)
[A×(B×C)]α=A·(BαF)-(A·B)Cα (4)
[(A×B)×C]α=A·(BαC)-Aα(B·C) (5)
证明:式(3)左端写成分量形式,为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image708.jpg?sign=1739005817-pBRjpJ5UuRLNamut9Rai7bdExasYGGXG-0-ce9f4879f740181321edbbfdc79fc665)
其中εαβγ为Levi—CiVita符号,即
ε123=ε231=ε312=1
ε132=ε213=ε321=-1 (6)
εαβγ=α、β、γ中有两个或三个相同
式(3)右端也可化成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image709.jpg?sign=1739005817-Vk97ovRSra4bKNKwxKMQKH1b44uTGeIF-0-1d1b7bceb80e25999306988a0537655c)
故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image710.jpg?sign=1739005817-aZEoXTZtDvo2nEYyblOnHc8BBEy1NpR9-0-ba867404d0d026f159e125a9e5a73ea0)
验证式(4),以第一分量为例,左端为
[A×(B×C)]1=A2(B×C)3 A3(B×C)2
=A2(B1C2-B2C1)-A3(B3C1-B1C3)
=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)
而式(4)右端第一分量为
A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1
=A2B1C2+A3B1C3-(A2B2+A3B3)C1
和式(8)相等,故式(4)成立.
同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image711.jpg?sign=1739005817-76aTQUOPTQXgavDJyO0xdsJ9QrQjoIlc-0-30b27e49474acd311163a9cb889a4a2c)
A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成
A×(B×C)=(A·C)B-(A·B)C
(A×B)×C=(A·C)B-A(B·C)
这正是经典物理中的三重矢积公式.
3.6 设A与B为矢量算符,F为标量算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image712.jpg?sign=1739005817-iJv9KMNYlaU23ZEvwznNHH1E8bsY3F25-0-a3e1c8634bb141cf04d4b36faa750f4d)
【证明见《量子力学习题精选与剖析》[上],4.2题】
4.2 设A、B为矢量算符,F为标量算符,证明
[F,A·B]=[F,A]·B+A·[F,B] (1)
[F,A×B]=[F,A]×B+A×[F,B] (2)
证明:式(1)右端等于
(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B]
这正是式(1)左端,故式(1)成立.同样可以证明式(2).
3.7 设F是由r与p的整函数算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image713.jpg?sign=1739005817-v6nxCH0OMOF8UmC5231hBKCleetEdcyP-0-b571c39d36380a407bc3528c19df2dc2)
【证明见《量子力学习题精选与剖析》[上],4.3题】
4.3 以,r、表示位置和动量算符,
为轨道角动量算符,
为由r、
构成的标量算符.证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image719.jpg?sign=1739005817-U1VmEcjlRFx9CRKdKsA93AxiWHcx4xWu-0-908c9a5dd2b1437d3dabdd1c7d68c21d)
证明:利用对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image720.jpg?sign=1739005817-O81SgzWYqBi0R6P3uI1m4j2BlXGpfati-0-4039669d19c842b0fe70142839fe3dc5)
以及题4.2式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image721.jpg?sign=1739005817-j2pRBUKdDSLobJ2hJ3VE3djXRPGO8tta-0-a68d7a0595a286019c876560710992a0)
此即式(1)。
3.8 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image722.jpg?sign=1739005817-yVPp8iOoOewFxMpvdEchWLRcFoTZ9DhY-0-f122ea615983034a8bf8bfdd3d3f2342)
【证明见《量子力学习题精选与剖析》[上],4.6题】
4.6 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image723.jpg?sign=1739005817-FdVSRsVaAwCWr43cgU2Vf1WuTEw9O1o7-0-4b50f4e9389d68aa28860efc273bb873)
证明:
(P×l+l×p)x=pylz-pzly+lypz-lzpy,
=[Py,lz]+[ly,pz]
利用基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image724.jpg?sign=1739005817-KH3xvJGdITGaJFKQiikTC13BunyxDhOz-0-5cf338a93c9f11c5a1d5571d7e5dd77e)
即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image725.jpg?sign=1739005817-FW3ANqBAYJaxC5Oi35u0W4a0Lan8FrQ0-0-1dfdab992e533d400746e84de7f8ebdc)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image726.jpg?sign=1739005817-cppimI9QnSO6xSQym2slI3ryBuL2uHHQ-0-267bae6f817b9069d81fd6c63e5e6e4a)
其次,由于px和lx对易,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image727.jpg?sign=1739005817-4bOlR986QPT1ThUicmtWUJhN0b3RfZYp-0-da34b254fef5c4e280b5e5dd1ccfc305)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image728.jpg?sign=1739005817-Uy4OgDBpyZEgmxRdmNBOJ3WLdfotaQPG-0-c6edbfd70e90ae5f0d43ff6ad2c72770)
3.9 计算
解:利用代数恒等式可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image731.jpg?sign=1739005817-3MTIpGO2c8z0b5DrDgQMws9loqwukO7a-0-5bbed048d05e595a68086ac89ea10444)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image732.jpg?sign=1739005817-2ksYyigRRQK74z1fttjl8hv1T7EF1Hse-0-d20bd01d0d4f3e7c2e1b26e32b77e127)
3.10 定义径向动量算符
证明:
(a)
(b)
(c)
(d)
(e)
【证明见《量子力学习题精选与剖析》[上],4.5题】
4.5 定义径向动量算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image739.jpg?sign=1739005817-YBOEyD9R2U6ilVJ0mVDeNE2WqCu0pq5D-0-b57b7894c77ea784014bc5aeb6edcc3d)
试求其球坐标表达式,并求及
.
解:在经典力学中,径向动量就是动量的径向投影,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image742.jpg?sign=1739005817-PEde6Ivbw9LzwnNojWdqIXaP7pnvdc9B-0-9e8696c6dbb748f1b913581d9e7db653)
过渡到量子力学,动量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image743.jpg?sign=1739005817-DD9uinxuJS8sqq9aDSR6hmDKicw4d4WW-0-f4725aa11f0895a0925143d67e7d47c9)
由于和r/r不对易,为了保证径向动量算符是Hermite算符,应取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image745.jpg?sign=1739005817-b9CMjOn6iNU6Kf3uUmyK1xR6ZQigspvG-0-5eeab0ec9f5131e003eb9f2c51cab95f)
此即式(1).利用式(3),易得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image746.jpg?sign=1739005817-V0lnlh8SJ9kToODuqp0EX0A94DbBl8rZ-0-a98a00a814008a1ec78c7172bd055811)
(4)
此即的球坐标表达式.
利用式(4),容易算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image749.jpg?sign=1739005817-u8VJuqA5Q2HlUpEVQHCqICZ7CI7Ls7ek-0-eba0c049b7891d03d783476ec2ececbb)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image750.jpg?sign=1739005817-JrRqq8tbS4cSteXIviEZFEbCqifu3Bbv-0-40b78fd682901ee1c19257c08b0c875c)
3.11 利用不确定度关系估算谐振子的基态能量
解:由于一维谐振子势具有对坐标原点的反射对称性,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image751.jpg?sign=1739005817-XZJLr64DI6zCFmNmqZAE8PoYNYCLo7xH-0-78d5fe0d0d31f2c556d21af5f2f19f19)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image752.jpg?sign=1739005817-gJUrZvFUSbITiW0vBAI9WK5CbPFFFssT-0-544a632e61ff07138602992c09f55a84)
所以在能量本征态下
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image753.jpg?sign=1739005817-7GQmRNvdv5RcU0dxZHoRPwmoYVo0SpVp-0-4aef9df1ff1a810451aa788f09ea9f35)
按不确定度关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image754.jpg?sign=1739005817-a6nWgbQqhaOm0k7qYhEyRh9c9hGQh284-0-8e1a2fb2c78e351427c36d0e43387de7)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image755.jpg?sign=1739005817-fU0Xpvk4fDEagAArdczxTs1q0j5ffIrJ-0-b687494c3a0a2dccd46cb454763f52ed)
它取极小值的条件为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image756.jpg?sign=1739005817-mKqncEjqO8pgDS2AVqEg3hHMNXtK3zzW-0-094c0207b69831ca844491419563eaf9)
由此得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image757.jpg?sign=1739005817-OmqWCemOfzVeCnkT7t4dvEkliCeePTix-0-3487e9f07f0bcb9c8c675ff6c37cd553)
用此值代入(3)式,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image758.jpg?sign=1739005817-4jtgCODoRrZVG2kZmqPB1xvidP86yRdm-0-fc2121d60c07d93355bf911c5ae210d6)
所以谐振子基态能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image759.jpg?sign=1739005817-FNEqsz9lAbKYxYAh1fLNHSFutREcf3Rz-0-f2729fe255bcf49f6c5dda0c0bb961ad)
3.12 证明在离散的能量本征态下动量平均值为零.
证明:体系的Hamilton量为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image760.jpg?sign=1739005817-FJXZ4mBCnnLDUXRAbTOXUF41fVoeIzlj-0-c2c84ba7a25d57005338f33854d29854)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image761.jpg?sign=1739005817-6BM1dc7gHO6cwkeNER4j9dK0Ic001noV-0-1246c89258911c4ae9953afb15c8345c)
对于束缚态,能量本征值是离散的,本征波函数ψ满足并且可以归一化,
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image764.jpg?sign=1739005817-Gwn8yrukbOLzqGLNPe36ZTF6PXjPnWqw-0-01886ae91968921233dacad10c8e9957)
3.13 证明力学量x与F(px)的不确定度关系以Hamilton量
为例,结合3.12题进行讨论
证明:按《量子力学教程》3.3节,不确定度关系(8),并利用(参见3.3题)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image767.jpg?sign=1739005817-N8RfOQ52VkDorh6n70GWlDrr3KyJ3Ziq-0-058fa94702fb8c98864724e568a13a0f)
可以得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image768.jpg?sign=1739005817-OhadBLIR7Lrg2IdoLlGJDEDaA8k36Q3f-0-f250f1bc3670fa4cc4173b4c6c153173)
3.14 证明在lx的本征态下
证明:假设ψm是lz的本征态,相应的本征值是,根据角动量的对易关系,
可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image772.jpg?sign=1739005817-tee9M0vyE0MNw8fK1otTT0CBGd36szrb-0-836f791fbcbef824e2e2f2478cf6ce90)
类似,利用可以证明
3.15 设粒子处于状态下,求
解:是l2及lx的本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image778.jpg?sign=1739005817-nScBakhfiHWkZtnZ36Yt7cExf78BO51e-0-e503f6fad90021e27ab6a8d7f52eb2b7)
按3.14题,,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image780.jpg?sign=1739005817-9GJE91ve0hKQLjRtuzsSx3bw3kUcwW0O-0-7b3f151cc8be7c080821863e189af2f3)
其次证明利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image782.jpg?sign=1739005817-FYIyTiLllSCeww9Iv3d7BwqHKPiXUeg7-0-c697b85d7547f1320526c276b55283f0)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image783.jpg?sign=1739005817-pZalEOUAk5O77Dnr7hF2b7xvsRGLgBDk-0-59c1d8d1af7afb7725dc4e5cf76cf020)
再利用,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image785.jpg?sign=1739005817-Y4frJLG5RgQ6wzWDGl5GoUsrXydDeene-0-0e295107fa0daa697b39dfc403d4e22f)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image786.jpg?sign=1739005817-yBoZM1OZnreZQG20scrwaGSjCXS4xYBO-0-67579789cc70df97b8187ed754cf12dd)
3.16 设体系处于状态(已归一化,即
(a)lz的可能测值及平均值;
(b)l2的可能测值及相应的概率;
(c)lx的可能测值及相应的概率;
解:Y11和Y20是l2和lz的共同本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image789.jpg?sign=1739005817-Gbn4Qn9W9lfbJ8pHwF0eI1FT6XuVR2KE-0-20e913beb27dafc6c513aac6805fc555)
(a)lz的可能测值为n,0,所相应的测值概率分别为所以lz的平均值为
.
(b)l2的可能测值为和
,相应的测值概率分别为
.
(c)在(l2,lz)表象中lx的矩阵元公式,(参阅《量子力学教程》第9章,169页,(26)式)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image795.jpg?sign=1739005817-rjrdyONfZGuScISbZ3kOLcfGsIHDysvh-0-c8d8bb4d74e6b4d6440c7c270a5c96c9)
可求出l=1的3维子空间中的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image797.jpg?sign=1739005817-TkK0HukQSKBztUktk7nvuzn8ZmqtiYMx-0-89722ebf2e69a4ff0183ae8b985967b5)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image798.jpg?sign=1739005817-AOCYnFgmmQLjzS51bkWc9u1cWBpWJGAn-0-1391a6be494997e15f0111c1fdd6b28e)
Y11态按这3个本征态展开的系数分别为,所以在c1Y11态下,测量lx得
的概率分别是
.
类似在l=2的3维子空间中,的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image803.jpg?sign=1739005817-9zMrDBhm9ki62SWPwbFeySRbFktEOa3C-0-c2baf79c66091ff0857b03d89ea9c1ea)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image804.jpg?sign=1739005817-AEEHgwP6yJx84kiUYZCq03N62GExbvwe-0-b56fa4439094e7873251e51ec604d5ab)
Y20态按这5个本征态展开的系数分别为,所以在c2Y20态下,测量l,得
的概率分别为
而在
态下测量得lx的可能值和概率分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image810.png?sign=1739005817-cxBdIYrn7ik7q7OK0nGkI8PMfWdSjBSo-0-6de0af2756efd9edc38025220e8abe79)
3.17 算符A与B不对易,
证明
(对于A与B对易情况,即C=0,显然)
【证明见《量子力学习题精选与剖析》[下],3.7题】
3.7 设算符A与B不对易,[A,B]=C,但是C与A及B对易,即[A,C]=0,[B,C]=0.试证明Baker—Hausdorff公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image814.jpg?sign=1739005817-Vxhw4N6STa7bvgLafbPvYy44bgYe48Dq-0-68f1a7a6b15ecb705943a1f00823b7b0)
证明:引入参变数λ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image815.jpg?sign=1739005817-ZoJgm5jKHPuwSwfmjqWXWKbtqLBtxo0H-0-9d448682e93e1c6514f9ea3148e52081)
注意f(0)=1,f(1)=eAeB.上式对λ求导,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image816.jpg?sign=1739005817-4Vv7NaadTQvjyoOp1aEnJy68kuqLV3Cl-0-7be4cb20e4f2f1f7ce6e8a09e1b852d0)
而根据题3.6式(3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image817.jpg?sign=1739005817-rdFLhRZNhj84iGuZgEeXHHKErDw9E3q4-0-3151608e879e5cea290f2e3c242414bc)
代入式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image818.jpg?sign=1739005817-39xksbiFw4CMa4Mk7KMXvz3z0rgapu28-0-fad1b735fe0148d993fe896e41d37a43)
以f-1(λ)乘之,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image819.jpg?sign=1739005817-gupSliNlxE3pPtB4mzfQwd10oF82Ulsh-0-890d4b4f53ff79aef92ab34cb1b19efd)
积分,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image820.jpg?sign=1739005817-Nf9c0pbIPfNXmMVOHvgNNsQ3rzdouibl-0-04888e8e232394d2ea88f12a9e222dd7)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image821.jpg?sign=1739005817-7K51fPWHiEjdk13kd2sHLxxj85SZtCYX-0-8a2632e86872790dabe6aa782da405f9)
由于f(0)=1,故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image822.jpg?sign=1739005817-6p7jfCxtnN5ZccD1IsdQBis93aLuY5Hd-0-49b5b4b7f4c72fcb198457aacbca022d)
以右乘上式,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image824.jpg?sign=1739005817-Fywme3dDPJcNu19oHHZSRUcarBCmDvp6-0-7307e28c0d8676da1c079c2eed804cd6)
如令A→B,B→A,则C→[B,A]=-C,上式变成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image825.jpg?sign=1739005817-OK6ZLTxCKPmIZr7sYxBFJlU46xp16cZg-0-0196ffa51c0b035676959738f0291589)
式(6)和(6′)中取λ=1,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image826.jpg?sign=1739005817-57KSaRPhbWYke2MA5TYkjx5YxMB4MYGN-0-79d98b401034272284047294ee043de5)
如A、B对易,则C=0,上式即还原成题3.1式(4).
3.18 设A与B是两个不对易的算符,α为一个参数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image827.jpg?sign=1739005817-opI15E3nlGMyoeOI4TIKlUowuQW2nCj3-0-067fb7019f00ad671e5d2a0039dc3ae8)
【证明见《量子力学习题精选与剖析》[下],3.5题】
3.5 给定算符,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image829.jpg?sign=1739005817-f31cOFsOuy3Bq5VlzVdGEFmd2fGYQCqB-0-ef547487f3385ecec3de741181e21791)
证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image830.jpg?sign=1739005817-iC9OhJknkLMksjPz5trjQvjQ4LN2EsGy-0-1407713cd0798b49fa362b6380890546)
证明:引入参变数ξ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image831.jpg?sign=1739005817-05WOqsgVHSx8h3nSk3E0p5WOjP9aQd3W-0-d1a114f24befdce66a3d4f8f71b17d00)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image832.jpg?sign=1739005817-VpsbX3b2IuICagFJVz8eIe9R4zJ7AAxL-0-217c6eb63257fdf5d32ed63eec608d59)
对ξ求导,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image833.jpg?sign=1739005817-ZqsZyhOFZKWxzxXXpdCtiqgDiPVLXxpe-0-e012a09bf711674ac8374453a37fef5f)
根据Taylor公式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image834.jpg?sign=1739005817-NRgOzTQYzK5cAQORpV36lnwy6peqTFfJ-0-2471001de3c816e833b14d46f4e16a0d)
而由式(3),令ξ→0即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image835.jpg?sign=1739005817-sDiq0YHnZ8BcryU3qwBY55rmMiYYXCR7-0-c565939cba9f329b4577d6186520a242)
代入式(4),并顾及式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image836.jpg?sign=1739005817-dw7VlqnhP2OcyUZczUKdlWboh8lpmexn-0-37a995ae9cc8a4b5cc2942f3c785a189)
亦即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image837.jpg?sign=1739005817-K2UFbL9wRZeqY9RUs2dNEnM4arzUOmdp-0-881b5a3199f58966422a563c5f4f8175)