![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739005085-HZNDJN0e6JkIf77VCDOcJObqV1edkQK0-0-29059d53fed62770999ef4f79637363a)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739005085-8W9FOrBMWd4tKeBr4IaP055yesUxtwF2-0-575915d2e9b070d7bac58a51b7e75108)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739005085-XO0bG3mgN14wYXLaEst4srhx55T0sOQy-0-1c8ec0b702ba52263a83eac87b61c1e3)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739005085-QfkObjbPyygnTOGdinC6vHaG8jObkkqs-0-81922403f8a7aaeadace1e659843f4a2)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739005085-69vtynEudjEeVLdPiXqVla0xzaqU15Rp-0-5f9c8cfa6e108547550fccfec6584224)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739005085-GIuC68RI9yGnyL1tsPT2kLQwZV5a00ly-0-bca1004d2f5d93b8aad9334c2f3036a9)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739005085-yPifODBOtztT3WICBvaLoske3HsFwk29-0-e1a68b0e41b1e75fb2f71bd5360bb5ce)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739005085-okxI7CqZr22h1hTCS7bIvYPoRs3OW0Vi-0-c7bbc8fcb6aefe6645a825b462b643cb)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739005085-4ouE6o5Ah8CtH2mh3xBXrRKV1yBewSZO-0-3d0daababbd659e60f536b2a9b148ffe)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739005085-bdFuitJZ7tuVQPBADj1eIYOBvQCiAvzj-0-c967a8490350998d5b156044dce403ec)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739005085-bTLDt39wLsmWqlBtMatqMzYIZJEDAUV3-0-eeae622f0219243283b79006d2282a47)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739005085-lY4ujTLpdi0hpmnsF04oHBUkusyCxmq0-0-b6882c1e4f054d389a608b99e444b835)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739005085-mhKV2L0kJxwxjoJTktX1rqMGlxGbSJdb-0-3578b07fc1ec9f36c11e4c4a567d8ce8)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739005085-lZpx4jd8zMDpWjR2HYt9woZDxQ2U3JQ7-0-b2e116ccfdcfe5d58894bdfecd2a81a0)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739005085-q3acflkjBHZeIOznZQBaWQjoO6mhmsE3-0-39e4958a42a17af8d15467ef9070bd0f)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739005085-JrODiUOdie8WKemp2OiQaC1fox0L45Rn-0-58c95a45501a9c73729dac10bb372b0e)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739005085-GLJbtLgHumG1AGrIQfxpzsP9WRLA9j1G-0-b76de6d49aa025875c87b186e4751336)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739005085-dwPKMfCDDuN77Vo9SQpWcqLULpmPTcrX-0-02b846312505ceac65467efa1a5371e1)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739005085-M1WADT6tiV3QA4jA6JkQA0Oz1tKq8fqs-0-fc233a592a33eb19431c64058036fa1b)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739005085-ynhXIS9p0P3OWemikLGIUM5zuwc0Vk9D-0-b52980e1f65da6363add3eb93cfc9414)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739005085-cAtiRaOJO4D0fH5UQmq9UvjQMQA9fiqx-0-b2ef54c6a6ce0a25960fbe0bf90eff80)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739005085-r4DL8DuYBhR3F3JD1zIgOcfdE44e3vId-0-140deb706d468dd548fad95d704e5cf7)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739005085-eeiKFJf7FsPKogWxc0vFTaYh2c5tw4wU-0-9068f8617dafd95f5368393e68af6617)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739005085-NpJfma7YFDFLFjhq14YQxH9gWroBGEDz-0-7c6d1b76cc1041999e26def1f4c93d3a)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739005085-BgiX6kgvk3Wv6PAtLEB17AwCGiZDeVBR-0-af36c7eef6a3d40126dd6ec8e385a93c)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739005085-pIiE39ecz9tmKvo7iPvfT4FvbaUWXJfa-0-6c832c8a981d8439186a1d299455f154)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739005085-36KRKBBicvnZoDQJmKHJ7tdMFhSO8P5r-0-3184831c68625483f703dd6c9398164b)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739005085-crbuYCTjpCp685IPBVaOZmLzC7HenpRl-0-7382c5e5c0944a76f267e0add63195e3)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739005085-VraajqynChxe3POTMLYC9F9QzNcIQrY6-0-5eef70d7f7af1a2e5319f957942985c7)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739005085-3eEmENaDvJz1FVUXIuDFvNgKvusPr1Fy-0-24d3e66cd84615baa61120fb8e52e121)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739005085-FQJhbacwVDU4qju45YznVv2CEFd0KYys-0-128ac82dce3d35919998ccfcd5242391)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739005085-1C97xlMKKX53489fzrJNIqZrES7OTkWQ-0-3aab132946c0dd53dc194290661288e9)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739005085-jzxMer3JbUVnXkjCDbmvHoZnLXqjS057-0-8692e225b059487d020a7e1b00303c3b)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739005085-HlPZxHrFPhldwC8Jq5yS57kgLvbSCPNf-0-01a91eb077f9cb5d8ce7bf78298223b0)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739005085-cK5MQdkfJfpwnU2RZBIZG5mm42Ek867P-0-aba79bfb72dfb9c66512c19efeecf639)
上式式表明相空间一个体积元h3相当于有一个量子态.