数学好的人是如何思考的
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

平方根(初中3年级)

杀人的数

生活在公元前5世纪的古希腊人,坚信所有的数都可以用整数的比(分数)来表示。特别是以哲学家毕达哥拉斯为首的毕达哥拉斯学派,认为“数是万物之源”,他们就像信仰神明一样,忠实地坚信整数和整数的比,甚至给数字1~10下了如下“定义”,也就是所谓的“毕达哥拉斯数秘术”。

毕达哥拉斯数秘术

1:理性

2:女性

3:男性

4:正义●真理

5:结婚

6:恋爱与灵魂

7:幸福

8:本质与爱

9:理想与野心

10:神圣的数

毕达哥拉斯数秘术也可用于计算,例如,

2+3=5是“女性+男性=结婚”

2× 3=6是“女性×男性=恋爱”

2+5=7是“女性+结婚=幸福”

3× 3=9是“男性×男性=野心”

是不是觉得很容易?当然,万事不能一概而论。与一般人相比,数学家更能感受到每一个数字的“个性”,因此,他们这样定义数字也是可以理解的。顺便说一句,占星术和塔罗牌占卜术都源于毕达哥拉斯数秘术。

虽然当时的古希腊人认为,整数和整数的比能描述一切数的概念,但是在已被神化的毕达哥拉斯学派中,已经有人察觉到,其实世上存在无法用整数的比来表示的数。最讽刺的是,那个数的存在,还是通过毕达哥拉斯定理(也称勾股定理)证明出来的。

勾股定理(毕达哥拉斯定理)

在左侧的直角三角形ABC中,

a2b2c2是成立的。即,

两条直角边的平方之和等于斜边的平方。

详细内容参见第6章“令人信服”。

毕达哥拉斯学派的希帕索斯发现,下面这种直角三角形的斜边长度c无法用分数表示。

据说,当时听到这一说法的毕达哥拉斯非常震惊,要求所有弟子不得向外界泄露这个数的存在,甚至为了维护自己的权威而杀害了希帕索斯。希帕索斯发现的这个无法用整数的比(分数)来表示的数,就是无理数(irrational number)。

irrational number是指无法用比(ratio)来表示的数,所以有些人认为不应该将其翻译成“无理数”,翻译成“无比数”更贴切。