1.4.4 基因编辑
基因编辑技术(gene editing technology)又称为基因组编辑(genome editing),是一种以特异性改变遗传物质靶向序列为目标基因,通过删除、替换、插入等操作,获得新的功能或表型,甚至创造新的物种。
从最初的基因打靶技术到锌指核酸酶(zinc finger nuclease,ZFN)、类转录激活因子效应核酸酶(transcription activator-like effector nuclease,TALEN)以及CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9系统,再到以碱基编辑技术为代表的新兴技术的出现,基因编辑技术经过不断的发展和完善,变得更加灵活、高效。基因编辑技术的发展和应用在农业育种和作物改良以及人类疾病的基因治疗方面展现出巨大的潜力,开创了全球生命科学研究的新时代。
(1)ZFN。作为第一代基因编辑技术,ZFN使用同时包含DNA识别结合域(锌指蛋白结构域)和DNA裂解域的核酸酶(限制性核酸内切酶FokⅠ的核酸酶切活性区域)形成的能够产生位点特异性DSB的系统来执行基因编辑功能。ZFN由Chandrasegaran团队于1996年提出。ZFN的α螺旋中的1、3、6位的氨基酸分别特异性地识别并结合DNA序列中的3个连续的碱基,这也使得锌指核酸酶能定位于复杂基因组内的独特的靶向序列。利用内源DNA修复机制,锌指核酸酶可用于精确修饰高等生物的基因组。然而,ZFN的序列特异性也使得其具有目标识别率低、成本高等特点,限制了它的大范围应用。
(2)TALEN。TALEN同样使用同时包含DNA识别结合域和DNA裂解域的核酸酶。与ZFN不同的是,TALEN将TALE蛋白与FokⅠ内切酶区域加以结合。由于4种碱基都有各自对应的TALE模块,因此TALEN可以通过目标序列的不同组装不同的TALE识别模块,加强了其设计的简便性。但其目标识别率低、成本高、脱靶概率高、结构复杂等问题仍未得到解决。
(3)CRISPR/Cas9系统。学术界对于便捷、识别率高的基因编辑技术的渴望推动了新一代基因编辑技术的发展,CRISPR/Cas9系统源于细菌中的适应性免疫系统,可直接用于基因突变或基因敲除。CRISPR/Cas9的基本原理是利用向导 RNA介导 Cas 蛋白在特定的靶标序列处引起 dsDNA的断裂,然后利用同源重组方法进行精准的 DNA序列替换或利用非同源末端连接方法进行靶标基因的中断。CRISPR/Cas9系统通过CRISPR RNA(crRNA)和trans-activating crRNA(tracrRNA)以及Cas9蛋白组成的复合体抵御外源性DNA的入侵。Cas9是一种与sgRNA结合的核酸酶,通过sgRNA中存在的一个20 bp的核苷酸序列,将Cas9激活并靶向到一个特定的基因组位点(称为原间隔子邻近基序或PAM位点)。Cas9随后催化一个靠近PAM位点的DSB,NHEJ修复低保真度的DSB将在酶切位点形成一个小的插入/删除,从而在目标位点内进行突变。与ZFN和TALENs相比,CRISPR/Cas9系统具有操作简单、成本低、编辑位点精确、脱靶率低等特点,其基因编辑效率超过30%,大大降低了基因编辑的时间成本和经济成本。其在抗生素耐药菌、COVID-19检测、癌症治疗、高产水稻品种的生产等方面皆有大量的应用。
(4)碱基编辑器。单碱基编辑技术可以实现对单碱基的精准编辑,大大降低了编辑过程中对靶基因功能的影响。2016年,美国哈佛大学David Liu的实验室使用专门设计的Cas9融合蛋白开发了一个单碱基编辑器,即胞嘧啶碱基编辑器(cytosine base editor,CBE)。2017年,David Liu还公布了其开发的腺嘌呤碱基编辑器(adenine base editor,ABE),该编辑器通过使用腺嘌呤脱氨酶促进腺嘌呤(A)突变为鸟嘌呤(G)。当含有腺嘌呤脱氨酶的Cas9融合蛋白被sgRNA靶向到基因组DNA时,腺嘌呤脱氨酶催化腺嘌呤脱氨生成肌苷(I),肌苷被读取并复制为鸟嘌呤残基。因此,在DNA复制后,A-T碱基对直接取代了G-C碱基对。目前,单碱基编辑器已应用于基因编辑、基因治疗、生成相关动物模型和功能基因筛选。
2020年,Dali Li团队通过融合激活诱导的人胞嘧啶脱氨酶、腺嘌呤脱氨酶和nCas9,开发了一种新型的双功能、高活性碱基编辑器,并将其命名为A&C-BEmax。A&C-BEmax可以有效地转化同一等位基因内目标序列上的C > T和A > G,双碱基编辑技术由此应运而生。同时,中国科学院遗传学研究所的Caixia Gao和Jiayang Li在nCas9的N端融合了胞嘧啶脱氨酶APOBEC3A和腺嘌呤脱氨酶ABE7.10,并通过此种方法成功构建了4种新型的饱和靶向内源性基因突变编辑器(saturated targeted endogenous mutagenesis editor,STEME),依次将其命名为STEME-1~STEME-4。这些碱基编辑器具有在单一sgRNA的引导下诱导C > T和A > G靶位点同时突变的明显优势,还显著提高了靶基因的饱和度和突变类型的多样性。
单碱基编辑器只能催化单一碱基类型的转换,限制了其广泛的应用。使用双碱基编辑技术可以同时有效地产生两种不同的碱基突变,极大地丰富了碱基编辑的手段,使得基因编辑过程在不失精准性的条件下更加快捷。
(5)转座子类编辑技术。一般来讲,基因编辑技术依赖于DNA断裂,这通常会导致错误被放置在链断裂修复部位的DNA中,同时会触发DNA损伤反应,从而导致其他不良的细胞反应。因此,研究人员试图利用转位现象,在不破坏目标位点的情况下插入所需的DNA序列,而不破坏细胞。转座子可以整合到细菌基因组的特定位点,而不需要消化DNA。重要的是,整合酶插入DNA的位点完全由它们相关的CRISPR系统控制。采用转座子类编辑技术,可以将任何DNA序列插入细菌基因组中的任何位置。对编辑后的细菌进行测序,在非目标位置没有额外的拷贝的条件下,证实了整合可以实现精确的插入。2019年6月,张锋的团队从一种蓝细菌——贺氏伪枝藻(Scytonema hofmanni)中获得了与CRISPR效应蛋白Cas12k相关的转座酶,并构建了名为CAST的系统,该系统将nCas9与单链DNA转座子TNPA偶联,然后检测大肠杆菌基因组中的蛋白复合物,促进了外源DNA的位点特异性整合。