3.1 双重否定
倘若否定了“企鹅不是鸟”这一命题,又会怎样呢?这就是对否定形式的命题再一次加以否定。倘若照字面来写,那便是“企鹅并非不是鸟”。这样的措辞似乎有点儿奇怪,实际上,其要表达的是“企鹅不是鸟”是假命题,也就是与事实不符,因此,也可以认为其意义等同于“企鹅是鸟”。像这样,否定两次即为肯定。
对此进行一般化表述时可以使用P、Q、R这组字母,以便代入任意命题。(如前所述,“P”是意为“命题”的英语单词“proposition”的首字母。)上面这句话则可以写作“并非不是P就等同于P”。但“并非不是P”这样的措辞总让人觉得有点儿别扭,令人难以理解,所以,我们不妨将命题P的否定写作“not P”。如此一来,前述“并非不是P就等同于P”便可以写作“not(not P)则等同于P”。虽然也可以写作“not not P”,但为了便于识读加入了括号,写作“not(not P)”。
否定两次叫作“双重否定”。“双重否定not(not P)则等同于P”这一关系在逻辑学中称为“双重否定律”。
尽管如此,“等同于”这个词还是有点儿表述不清。要先弄清楚在什么意义上可以说是“等同于”,因此,这里要导入“等值”这一术语。当P为真Q亦必为真、P为假Q亦必为假时,就说P和Q为等值关系,并写作“P≡Q”。
问:“≡”与等号“=”不同吧?多了一横。
答:不同。后面会时常用到等号“=”,并笼统地将其作为“等同于”之意来使用。与此相对,这里被定义为“当P为真Q亦必为真、P为假Q亦必为假时,P≡Q”的等值则是逻辑学中给出的严格定义。
因此,“≡”是被严格定义的符号,而“=”可以简单理解为“等同于”的简略表记符号。
不过,逻辑学随后也会正式导入并定义等号“=”。那样一来,“=”就会以不同于“≡”的意义在逻辑学中出现。不过,本书尚未涉及那一步,所以,等号“=”出现的时候,大家可以笼统地将其理解为“等同于”之意。
接下来,我们看一下双重否定律。双重否定律可以用等值符号“≡”来表示。当not(not P)为真时P势必为真,当not(not P)为假时P势必为假,因此,not(not P)与P是等值关系。这在逻辑学中叫作“双重否定律”。
双重否定律 not(not P)≡P
再强调一下,P可以替换为任意命题。例如,假如将P替换为“消防员是公务员”,那则成为“‘消防员并非不是公务员’等值于‘消防员是公务员’”。习惯之后,也许使用符号表记反而更加简洁易懂。