参考文献
[1] C.Goldberg, et al.Integration of a mechanically reliable 65nm node technology for low-k and ULK interconnects with various substrate and package types.IEEE IITC,2005:3.
[2] D.James.2004-The year of 90nm:a review of 90nm devices.IEEE Advanced Semiconductor Manufacturing Conf,2005:1-5.
[3] S.E.Thompson, et al.Uni-axia-l process-induced strained-Si:extending the CMOS roadmap.IEEE ED,2006,53(5):1010.
[4] P.R.Chidambaram, et al.Fundamentals of Si materials properties for successful exploitation of strain engineering in modern CMOS manufacturing.IEEE ED,2006,53(5):944.
[5] M.Bohr, R.S.Chau, T.Ghani, K.Mistry.The high-k solution.IEEE Spectrum,2007:29-35.
[6] S.Kawanaka, et al.Advanced CMOS Technology beyond 45nm node.IEEE VLSI-TSA,2007:1-4.
[7] Wang, H.C.-H.et al.Arsenic/Phosphorus LDD Optimization by Taking Advantage of Phosphorus Transient Enhanced Diffusion for High Voltage Input/Output CMOS Devices.IEEE, ED,2002, 49(1):67-71.
[8] Goss, M.Thornburg, R.The Challenges of Nitride Spacer Processing for a 0.35pm CMOS Technology.Advanced Semiconductor Manufacturing Conf and workshop IEEE/SEMI.1997:228-233.
[9] E.Augendre, et al.Thin L-shaped spacers for CMOS devices.2003:219-222.
[10] S.Sleva, Y.Taur.The influence of source and drain junction depth on the short-channel effect in MOSFETs.IEEE ED,2005,52(12):2814.
[11] Y.Chen, et al.Manufacturing enhancements for CoSi2 self-aligned silicide at the 0.12-μm CMOS technology node.IEEE ED,2003,50(10):2120.
[12] S.R.Burgess, K.E.Biichanan, D.C.Butler.Long throw and i-PVD liners for W-plug contact and via applications.IEEEISEMI Advanced Semiconductor Manufacturing Conference,2001:98.
[13] R.H.Haveman, J.A.Hutchby.High-Performance Interconnects:An Integration Overview. Proceedings of the IEEE,2001:89(5):586.
[14] Mark T.Bohr, R.S.Chau, T.Ghani, K.Mistry.The High-k Solution.IEEE Spectrum,2007:30-35.
[15] A.Veloso, et al.Gate-Last vs.Gate-First Technology for aggressively scaled EOT Logic/RF CMOS.VLSI,2011:34.
[16] K.Ahmed, K.Schuegraf.Transistor Wars:Rival architectures face off in a bid to keep Moore's Law al ive.IEEE Spectrum,2011:50.
[17] S.Natarajan, et al.A 14nm Logic Technology Featuring 2nd-Generation FinFET, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 um2SRAM cell size.IEDM,2014:71.
[18] D.Park, W Lee, B.Ryu.Stack DRAM technologies for the future.VLSI-TSA,2006.
[19] W.Mueller, et al.Trench DRAM technologies for the 50nm node and beyond.VLSI-TSA,2006.
[20] T.Sanuki, et al.High-density and fully compatible embedded DRAM cell with 45nm CMOS technology(CMOS6).VLSI Technology,2005:14.
[21] T.Hamamoto, et al.A floating-body cell fully compatible with 90nm CMOS technology node for a 128Mb SOI DRAM and its scalability.IEEE ED,2007,54(3):563.
[22] E.Yoshida, T.Tanaka.A capacitorless 1T-DRAM technology using gate-induced drain-leakage(GIDL)current for low-power and high-speed embedded memory.IEEE Trans Electron Devices, 2006,53(4):692.
[23] R.Ranica, et al.Scaled 1T-bulk devices built with CMOS 90nm technology for low-cost eDRAM applications.VLSI Technology,2005:38.
[24] K.Kim, J.H.Choi, J.Choi, H.Jeong.The fututre of nonvolatile memory.VLSI-TSA,2005:88-94.
[25] R.Annunziata, et al.Phase Change Memory Technology for Embedded Non Volatile Memory Applications for 90nm and Beyond.IEDM Tech.Dig,2009:531-534.
[26] C.Lu, T.Lu, R.liu.Non-volatile memory technology-today and tomorrow.IFPA,2006:18-23.
[27] H.Toyoshima, et al.FeRAM devices and circuit technologies fully compatible with advanced CMOS. CICC,2001:171.
[28] H.Ishiwara.Current status and prospects of ferroelectric memories.IEDM,2001:725.
[29] D.J.Jung, et al.Key integration technologies for nanoscale FRAMs.Int'l Symp.Application of Ferro-electricity,2007:19.
[30] Y.Nagano, et al.Embedded Ferroelectric memory technology with completely encapsulated H barrier structure.IEEE Semi Manufacturing,2005,18(1):49.
[31] Y.Kumura, et al.A SruO3/IrO2 top electrode FeRAM with Cu BEOL process for embedded memory of 139nm generation and beyond.ESSDERC,2005:557.
[32] T.W.Noh, et al.A new Ferro-electric material for use in FRAM:Lanthanum-substitute Bismuth Titanate.Int'l Symp Application of Ferro-electricity,2000:237.
[33] A.Sheikholeslami, P.G.Gulak.A survey of ciruite innovations in ferro-electric RAM.IEEE Proceedings,2007:667.
[34] D.Ha, K.Kim.Recent advances in high-density phase-change memory(PRAM).VLSI-TSA,2007.
[35] C.Lam.Phase-change memory.DRC,2007:223.
[36] G.Atwood, R.Bez.Current status of Chalcogenide phase change memory.DRC,2005:29.
[37] S.Lai, T.Lowrey.OUM-a 180nm nonvolatile memory cell element technology for stand alone and embedded applications.IEDM, p#36.5.1,2001:803.
[38] A.L.Lacaita, D.I elmini.Reliability issues and scaling projections for phase-change non volatile memories.IEDM,2007:157.
[39] T.D.Happ, et al.Novel one-mask self-heating pillar phase-change mewmory.Symp.VLSI Tech. 2006:148.
[40] C.Lin, et al.Resistive switching mechanisms of V-doped SrZrO3 memory films.IEEE EDL,2006, 27(9):27.
[41] X.Chen, N.Wu, A.Ignatiev.Perovskite RRAM devices with metal/insulator/PCMO/metal heterostructures.Tech Sym.NVM,2005:125.
[42] T.Fang, et al.Erase mechanism for Copper oxide resistive switching memory cells with Ni electrode.IEDM,2006:789.
[43] C.Ho, et al.A highly reliable self-aligned graded oxide Wox resistive memory:conduction mechanism and reliability.Symp.VLSI Tech.2007:228.
[44] K.Tsunoda, et al.Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3v.IEDM,2007:767.
[45] K.Aratani, et al.A novel resistive memory with high scalability and nanosecond switching.IEDM, 2007:783.
[46] M.N.Kozicki, M.Park, M.Mirkova.Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnology,2005,4(3):331.
[47] I.H.Inoue, et al.Strong electron correlation effects in non-volatile electron memory devices.IEEE Technology Symp.NVM,2005:131.
[48] U.Russo, et al.Conduction-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM.IEDM,2007:775.
[49] S.Ikeda, et al.magnetic tunneljunctions for spintronic memory and beyond.IEEE ED,2007,54(5):991.
[50] S.Tehrani.Status and outlook of MRAM memory technology.IEDM, paper#21.6,2006.
[51] W.J.Gallagher, et al.Recent advances in MRAM technology.Symp.of VLSI technology,2005:72.
[52] K.T.Nam, et al.Switching properties in spin transfer torque MRAM with sub-50nm MTJ. NVMTS,2006:49.
[53] U.K.Klostermann, et al.A perpendicular spin torque switching based on MRAM for the 28nm tech node.IEDM,2007:187.
[54] T.Endoh, et al.Novel Ulta high density flash memory with a stacked-Surrounding gate Transistor(S-SGT)structured cell.IEDM,2001:33.
[55] S.M.Jung, et al.Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node.IEDM,2006.
[56] H.Tanaka, et al.Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory.VLSI,2007.
[57] Jaehoon Jang, et al.Vertical Cell Array using TCAT(Terabit Cell Array Transistor)Technology for Ultra High Density NAND Flash Memory.VLSI,2009.
[58] Jiyoung Kim, et al.Novel Vertical-Stacked-Array-Transistor(VSAT)for ultra-high-density and cost-effective NAND Flash memory devices and SSD(Solid State Drive).VLSI,2009.
[59] Wonjoo Kim, et al.Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage.VLSI,2009.
[60] R.Katsumata, et al.Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Leve-l Cell Operation for Ultra High Density Storage Devices.VLSI,2009.
[61] Eun-seok Choi, et al.Device Considerations for High Density and Highly Reliable 3D NAND Flash Cell in Near Future.IEDM,2012.
[62] Hang-Ting Lue, et al.A Highly Scalable 8-Layer 3D Vertica-l Gate(VG)TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device.VLSI,2010.
[63] Park KT, Nam S and Kim D et al.3-D 128 GB MLC Vertical Nand Flash Memory With 24-Wl Stacked Layers And 50 Mb/S High-Speed Programming[J].IEEE Journal of Solid-State Circuits, 2015,50(1):204-213.
[64] Junichi Nakamura.Image sensors and signal processing for digital still camaras.Boca Raton:CRC Press.2006:142~153.
[65] PP Lee, RM Guidash, TH Lee.EG StenensActive pixel sensor integrated with a pinned photodiode.United States Patent 6100551.
[66] 孙羽,张平,徐江涛,高志远,徐超.一种用于优化小尺寸背照式CMOS图像传感器满阱容量与量子效率的新型光电二极管结构.半导体学报,2012,33(12):124006-7.
[67] 罗昕.CMOS图像传感器集成电路——原理、设计和应用.北京:电子工业出版社,2014.
[68] Andrew R B, Asen A, Jeremy R W.Intrinsic Fluctuations in Sub 10-nm Double-Gate MOSFETs Introduced by Discreteness of Charge and Matter[J].IEEE Trans On Nanotechnology,2002,1(4):195-200.
[69] Xiao D Y, Chi M H and Yuan D et al.A novel accumulation mode GAAC FinFET transistor:Device analysis,3D TCAD simulation and fabrication[J].ECS Trans.2009,18(1):83-88.
[70] 肖德元,王曦,俞跃辉,季明华等,一种新型混合晶向积累型圆柱体共包围栅互补金属氧化物场效应晶体管[J].科学通报,2009,54(14):2051-2059.
[71] 肖德无,张汝京.无结场效应管:新兴的后CMOS器件研究[J].固体器件研究与进展,2016,36(2):87-98.
[72] Park Chan Hoon.Investigation of Low-Frequency Noise Behavior After Hot-Carrier Stress in an n-Channel Junctionless Nanowire MOSFET[J].IEEE EDL,2012,33(11):1538.