参考文献
[1] Shockley William.The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors[J]. Bell System Technical Journal,1949:28(3):435-489.
[2] 赖尔登M,霍德森L.晶体之火 [M].浦根祥译.上海:上海科学技术出版社,2002:344-345.
[3] http://ecee.colorado.edu/~bart/book/book.
[4] Wilk G D, Wallace R M and Anthony J M.High-k gate dielectrics:Current status and materials properties considerations[J].J.Appl.Phys.,2001:89(10):5243-5275.
[5] Ghani T, Armstrong M, Auth C, et al.A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors[C].Washington, DC:IEDM'03 Technical Digest,2003:11.6.1-11.6.3.
[6] Tyagi S, Auth C and Bai P et al.An advanced low power, high performance, strained channel 65nm technology[C].Washington, DC:IEDM Technical Digest,2005:245-247.
[7] Mistry K, Allen C and Auth C et al.A 45nm Logic Technology with High-k + Metal Gate Transistors, Strained Silicon,9 Cu Interconnect Layers,193nm Dry Patterning, and 100% Pb-free Packaging[C].Washington, DC:IEDM Tech.Dig.,2007:247-250.
[8] Packan P, Akbar S and Armstrong Met al.High performance 32nm logic technology featuring 2nd generation high-k+metal gate transistors[C].Washington, DC:IEDM Tech.Dig.,2009:1-4.
[9] Shockley William.The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors[J]. Bell System Technical Journal,1949:28(3):435-489.
[10] Dawon Kahng.Electric field controlled semiconductor device,1960; U.S.Patent 3,102,230.
[11] 赖尔登M,霍德森L(浦根祥译)晶体之火 [M].上海:上海科学技术出版社,2002:344-345.
[12] Hisamoto D, Lee W C and Kedzierski J et al.FinFET-A self-aligned double-gate MOSFET scalable to 20 nm[J].IEEE Trans.Electron Device,2000:47(12):2320-2325.
[13] Hisamoto D, Kaga T and Kawamoto Y et al.A fully depleted lean-channel transistor(DELTA)[C].Washington, DC:IEDM Tech.Digest,1989:833-836.
[14] Colinge J P.Silicon-on-insulator Gate-all-around Device [C].San Francisco, CA:IEDM Tech. Digest,1990:595.
[15] Ferain I, Colinge C A and Colinge J P.Multigate transistors as the future of classical meta-l oxidesemiconductor field-effect transistors[J].Nature,2010:479(7373):310-316.
[16] Deyuan Xiao, Gary Chen and Roger Lee et al.System and method for integrated circuits with cylindrical gate structures,2009; US patent 8,884,363.
[17] Singh N, Agarwal A and Bera L K et al.High-performance fully depleted silicon nanowire(diameter≤5 nm)gate-all-around CMOS devices[J].Electron Device Letters, IEEE,2006,27(5):383-386.
[18] Xiao D Y, Wang X and Yu Y H et al.TCAD study on gate-all-around cylindrical(GAAC)transistor for CMOS scaling to the end of the roadmap [J].Microelectronics Journal,2009,40(12):1766-1771.
[19] Bangsaruntip S, Cohen G M and Majumdar A et al.High performance and highly uniform gate-al-l around silicon nanowire MOSFETs with wire size dependent scaling[C].Washington, DC:IEDM. Tech.Digest,2009:1-4.
[20] Cheng K, Khakifirooz A and Kulkarni Pet al.Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain[C].Kyoto, Japan:VLSI Tech.Digest 2009:212-213.
[21] Auth C, Allen C and Blattner A et al.A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors[C].Honolulu, Hawaii:VLSI Tech.Digest 2012:131-132.
[22] Jan C H, Bhattacharya U and Brain R et al.A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultralow power, high performance and high density SoC application[C].Honolulu, Hawaii:IEDM.Tech.Digest,2012:44-47.
[23] Anderson R L.Germanium-gallium-arsenide heterojunctions[J].IBM J.Res.And develop.,1960, 4(3):283-287.
[24] Esaki L and Tsu R.Superlattice and Negative Differential Conductivity in Semiconductors[J].IBM J.Res.Develop.,1970,14(1):61-65.
[25] Dingle R, Stormer H L and Gossard A C et al.Electron mobilities in modulation-doped semiconductor heterojunction superlattices[J].Appl.Phys.Lett.,1978,33(7):665-667.
[26] Hiyamizu S, Mimura T and Fujii T et al.High mobility of two-dimensional electronsat the GaAs/nAlGaAs heterojunction interface[J].Appl.Phys.Lett.,1980,37(9):805-807.
[27] Donald A Neamen著.半导体物理与器件[M].赵毅强,姚素英,解晓东,等译.北京:电子工业出版社,2003:420-425.
[28] Andrew R B, Asen A, Jeremy R W.Intrinsic Fluctuations in Sub 10-nm Double-Gate MOSFETs Introduced by Discreteness of Charge and Matter[J].IEEE Trans On Nanotechnology,2002,1(4):195-200.
[29] Deyuan Xiao, Gary Chen and Roger Lee et al.System and method for integrated circuits with cylindrical gate structures,2009; US patent 8,884,363肖德元,陈国庆,李若加等,半导体器件、含包围圆柱形沟道的栅的晶体管及制造方法,中国发明专利ZL200910057965.3(申请日:2009-09-28,中芯国际内部提交日:2005-08-26).
[30] Xiao D Y, Chi M H and Yuan D et al.A novel accumulation mode GAAC FinFET transistor:Device analysis,3D TCAD simulation and fabrication[J].ECS Trans.,2009,18(1):83-88.
[31] 肖德元,王曦,俞跃辉,季明华等.一种新型混合晶向积累型圆柱体共包围栅互补金属氧化物场效应晶体管[J].科学通报,2009,54(14):2051-2059.
[32] Juan P Duarte, Sung Jin Choi and Dong-Ⅱ Moon et al.A Nonpiecewise Model for Long-Channel Junctionless Cylindrical Nanowire FETs[J].IEEE EDL,2012,33(2):155-157.
[33] Pao H C and Sah C T.Effects of diffusion current on characteristics of metal-oxide(insulator)semiconductor transistor[J].Solid State Electron,1966,9(10):927.
[34] C P Auth and J D Plummer, “Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFETs, ”IEEE Electron Device Lett., vol.18, no.2, pp.74-76, Feb.1997.
[35] E Gnani, A Gnudi, S Reggiani and G.Baccarani, “Theory of thejunctionless nanowire FET, ”IEEE Trans.Electron Devices, vol.58, no.9, pp.2903-2910, Sep.2011.
[36] Colinge J P, Lee C W and Afzalian A et al.Nanowire transistors without junctions[J].Nature Nanotechnology,2010,5(3):225-229.
[37] Lee C W, Afzalian A, Akhavan N D et al.Junctionless multigate field-effect transistor[J].Appl. Phys.Lett.,2009,94(5):053511-053511-2.
[38] Gnani E, Gnudi A and Reggiani S et al.Theory of the junctionless nanowire FET[J].IEEE Trans. Electron Devices,2011,58(9):2903-2910.
[39] Choi S J, Moon D I and Kim S et al.Sensitivity of threshold voltage to nanowire width variation in junctionless transistor[J].IEEE Electron Device Lett.,2011,32(2):125-127.
[40] Rios R, Cappellani A and Armstrong M et al.Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm[J].IEEE Electron Device Lett.,2011,32(9):1170-1172.
[41] Singh P, Singh N and Miao J et al.Gate-all-around junctionless nanowire MOSFET with improved low-frequency noise behavior[J].IEEE Electron Device Lett.,2011,32(12):1752-1754.
[42] Park Chan Hoon.Investigation of Low-Frequency Noise Behavior After Hot-Carrier Stress in an nChannel Junctionless Nanowire MOSFET[J].IEEE EDL,2012,33(11):1538.
[43] Bahniman Ghosh, Partha Mondal, Akram M W et al.Hetero-Gate-dielectric double gate Junctionless Transistor(HGJLT)with reduced Band-to-Band Tunnelling effects in Subthreshold Regime[J].半导体学报,2014,35(6):064001-7.
[44] Irisawa T, Oda M and Ikeda K et al.High mobility p-njunction-less InGaAs-OI tri-gaten MOSFETs with metal Source/drain for ultra-low-power CMOS applications[C].NAPA, CA:IEEE SOI Conference(SOI),2012:1-2.
[45] Guo H X, Zhang X and Zhu Z et al.Junctionless Π-gate transistor with indium gallium arsenide channel[J].Electronics Letters,2013,49(6):402-404.
[46] Park J K, Kim S Y and Lee K H et al.Surface-Controlled Ultrathin(2 nm)Poly-Si Channel Junctionless FET Towards 3D NAND Flash Memory Applications[C].VLSI Tech.Digest, Honolulu, Hawaii:2014:98-99.
[47] Veloso A, Hellings G and Cho M J et al.Gate-Al-l Around NWFETs vs.Triple-Gate FinFETs:Junctionless vs.Extensionless and Conventional Junction Devices with Controlled EWF Modulation for Multi-VTCMOS[C].Kyoto, Japan:VLSI Tech.Digest 2015:T138-T139.
[48] Song Y, Zhang C and Dowdy R et al.III-V Junctionless Gate-All-Around Nanowire MOSFETs for High Linearity Low Power Applications[J].IEEE EDL,2014,35(3):324.
[49] Sun Y, Yu HY and Singh N.Vertical-Si-Nanowire-Based Nonvolatile Memory Devices With Improved Performance and Reduced Process Complexity [J].IEEE Trans.on Electron Devices, 2011,58(5):1329-1335.
[50] Djara V, Czornomaz L and Daix N et al.Tri-gate In0.53Ga0.47As-on-insulator junctionless field effect transistors.[C].Bologna, Italy:2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon(EUROSOI-ULIS),2015:97-100.
[51] Colinge J P.Junctionless Metal-Oxide-Semiconductor Transistor,2010; US patent 20100276662.
[52] Cappellani A, Kuhn K J and Rios R et al.Junctionless Accumulation-Mode Devices On Decoupled Prominent Architectures,2013; US Patent application number 20130334572.
[53] Kangguo Cheng, Bruce B Doris and Khakifirooz A et al.Method for fabricating junctionless transistor,2012; US patent 2013/0078777A1.
[54] 肖德元,无结晶体管及其制造方法,2013;中国专利申请号201310299418.2.
[55] Lilienfeld J E.Device for controlling electric current,1928; US patent 1,900,018.
[56] Shinji Migita, Morita Y and Masahara M et al.Electrical Performance of Junctionless-FETs at the Scaling Limit(Lch=3nm)[C].San Francisco, CA:IEDM Tech.Dig.,2012:191-19.
[57] Hudait M K, Dewey G and Datta S et al.Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin(< 2um)composite buffer architecture for high-speed and low-voltage(0.5V)logic applications[C].Washington, DC:International Electron Devices Meeting(IEDM)Technical Digest,2007:625-628.
[58] Datta S, Dewey G and Fastenau J M et al.Ultra high-speed,0.5V supply voltage In0.7Ga0.3As quantum-well transistors on silicon substrate[J].IEEE Electron Device Letters,2007,28(8):685687.
[59] Radosavljevic M, ChuKung B and Corcoran S et al.Advanced High-K Gate Dielectric for HighPerformance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Applications[C].Washington, DC:International Electron Devices Meeting(IEDM)Technical Digest,2009:1-4.
[60] Radosavljevic M, Dewey G and Fastenau J M et al.Non-Planar, Multi-Gate InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications [C].San Francisco, CA:IEDM Tech.Dig.,2010:126-129.
[61] Mark Bohr, Non-Planar, The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era[C].Washington, DC:International Electron Devices Meeting(IEDM)Technical Digest,2011:1-6.
[62] 肖德元,晶体管及其形成方法,2015;中国专利申请号201510149074.6.
[63] Daniel Delagebeaudeuf, Nwen T Linh.Metal-(n)AIGaAs-GaAs Two-Dimensional Electron Gas FET[J].IEEE Trans.ED,1982,29(6):955-960.