为什么你学数学的方法不对
算数是结果,数学是过程
很多人认为数学就是算数,而在我看来,这个想法也许正是让他们弄错数学学习方法的罪魁祸首。
再重申一次,数学和算数看似相同,实则不然。算数的目的是得出正确的结果,而数学更注重得到结果的推理过程,换句话说,算数追求的是计算的正确性,而数学追求的是逻辑的正确性。
比如,在计算23×15时,如果心算算不出来,我们就会列出下面的算式进行笔算:
在做算数题的时候,为什么用这个方法可以得到正确答案呢?我想大部分人都不会去思考这个问题,也同样没人考虑过为什么小学生能通过笔算得出正确答案。我们之所以会忽略这些问题,就是因为我们只注重结果,认为只要答案正确就达到了解题的目的。学珠算的孩子会借助口诀进行计算,有些知识面较广的孩子还可能会用印度式计算法进行计算,但不管用什么方法,只要23×15的答案是“345”,就能得分。
计算是数学的一部分,我们都知道用某个计算方法能得出正确结果,但思考不能就此停止,我们还要明白其中的来龙去脉。
为了找出上述问题的答案,首先我们要了解什么叫十进制。如果没有特殊标注,“23”指代的就是“2个10和3个1”。你可能会觉得:这不是明摆着的吗?有什么好解释的。但是,数学中并不是只有十进制,比如,古苏美尔和古巴比伦时期使用的就是六十进制;即便是现代,尼日利亚和尼泊尔等地也在使用十二进制。在我们的日常生活中,也有许多非十进制的单位,比如尺寸(1英尺=12英寸);时、分、秒(六十进制)等。
综上所述,在十进制中,23×15的意思是:用23(=10×2+1×3=20+3)与15(=10×1+1×5=10+5)相乘,可先将23×15分解为(20+3)×(10+5),再用我们在后面会学到的乘法分配律进行计算,
3×5=15
20×5=100
3×10=30
20×10=200
经过简化,就变成了下面的列式。如此一来,大家就明白为什么通过笔算能得出正确的答案了吧。
简单计算两个数相乘,就蕴含着如此复杂的逻辑推理过程。在数学中,为了让别人了解得到正确答案的解题过程,我们就需要有逻辑地证明出来。
再举个例子,比如著名的龟鹤算(译者注:源于中国《孙子算经》中的鸡兔同笼问题,后来传入日本,演变成了“龟鹤算”)。
问题
鹤和乌龟共8只,一共有20只脚。请问鹤和乌龟分别有几只?
这道题的标准解题方法如下。
首先,假设8只全是鹤: 8×2=16,那么脚的数量就是16只。
可是,这比题目中的20只脚少了4只。如果1只鹤换成1只乌龟,脚的数量就增加了2只。通过替换来弥补4只脚的差距;4÷2=2,那么只要将2只鹤换成2只乌龟即可。
因此:
8-2=6
0+2=2
答案为鹤有6只,乌龟有2只。
下面的面积图解法也是龟鹤算常用的解题方法之一。
怎么样?学会了吗?不过你现在要考虑的问题并不是是否学会了龟鹤算,而是思考“为什么这样解题”。
当然,无论是在学校还是补习班,都有在课上积极讲解解题思路的老师,这样的老师在解题时可能会先假设一个极端的例子(假设全部是鹤),然后再根据实际的题目加以增补或减免等。
但是不夸张地说,大部分老师只会用算数的方法来教“数学”。如果把数学当成算数,或是为了应付中考只告诉学生解题方法,那么学生们只要掌握了标准的解题方法,在其基础上稍加活用就能得出问题的标准答案。
顺便说一句,我当初读的是小初高一体化的学校,并没有学过龟鹤算,因为这种需要使用特殊算法解开的问题,都能通过初中数学中的方程来解答(具体内容我会在第3章“合理解题”中进行讲解)。
那么,我们为什么要学习这类特殊的算法呢?我认为,也许只有这种需要用特殊算法解决的问题,才能在初中入学考试中体现出学生的能力差距吧(我不是考试研究专家,纯属个人推测)。另外,在初中入学考试中,好学校不仅会出需要用标准解题方法解答的问题,还会出一些能够测试学生“思考能力”的问题。