合成生物学智能化设计与应用
上QQ阅读APP看书,第一时间看更新

1.7 参考文献

[1] Watson J D,Crick F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4356): 737-738.

[2] Jacob F,Monod J. Genetic regulatory mechanisms in the synthesis of proteins[J]. J Mol Biol, 1961, 3: 318-356.

[3] Kelly T J Jr, Smith H O. A restriction enzyme from Hemophilus influenzae.Ⅱ[J]. J Mol Biol, 1970, 51(2):
393-409.

[4] Danna K, Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae[J]. Proc Natl Acad Sci U S A, 1971, 68(12): 2913-2917.

[5] Szybalski W, Skalka A. Nobel prizes and restriction enzymes[J]. Gene, 1978, 4(3): 181-182.

[6] Jeff Gauthier, Antony T Vincent, Steve J Charette et al. A brief history of bioinformatics[J]. Brief Bioinform, 2019, 20(6): 1981-1996.

[7] Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767): 339-342.

[8] Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.

[9] Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science, 2002, 297(5583): 1016-1018.

[10] Vincent J J Martin, Douglas J Pitera, Sydnor T Withers, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nat Biotechnol, 2003, 21(7): 796-802.

[11] Benner S A, Sismour A M, Synthetic biology[J]. Nature Reviews Genetics, 2005, 6(7): 533-543.

[12] 张先恩,中国合成生物学发展回顾与展望[J]. 中国科学:生命科学,2019, 49(12): 1543-1572.

[13] 赵国屏,合成生物学:开启生命科学“会聚”研究新时代[J]. 中国科学院院刊,2018, 33(11): 1135-1149.

[14] Khalil A S, Collins J J. Synthetic biology: applications come of age[J]. Nat Rev Genet, 2010, 11(5): 367-379.

[15] Cameron D E, Bashor C J, Collins J J. A brief history of synthetic biology[J]. Nat Rev Microbiol, 2014, 12(5): 381-390.

[16] Jordan Ang, Edouard Harris, Brendan J Hussey, et al. Tuning Response Curves for Synthetic Biology[J]. ACS Synthetic Biology, 2013, 2(10): 547-567.

[17] Evan J Olson, Lucas A Hartsough, Brian P Landry Olson, et al. Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals[J]. Nature Methods, 2014, 11(4): 449-455.

[18] Premkumar Jayaraman, Kavya Devarajan, Tze Kwang Chua, et al. Blue light-mediated transcriptional activation and repression of gene expression in bacteria[J]. Nucleic Acids Research, 2016, 44(14): 6994-7005.

[19] Gen Nonaka, Matthew Blankschien, Christophe Herman, et al. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress[J]. Genes Dev, 2006, 20(13): 1776-1789.

[20] Guoliang Qing, Li-Chung Ma, Ahmad Khorchid, et al. Cold-shock induced high-yield protein production in Escherichia coli[J]. Nature Biotechnology, 2004, 22(7): 877-882.

[21] Alec A K Nielsen, Bryan S Der, Jonghyeon Shin, et al. Genetic circuit design automation[J]. Science, 2016, 352(6281): aac7341.

[22] Ying-Ja Chen, Peng Liu, Alec A K Nielsen, et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints[J]. Nat Methods, 2013, 10(7): 659-664.

[23] Anyuan Liu, Xiaoshuai Huang, Wenting He, et al. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps[J]. Nat Commun, 2021, 12(1): 1413.

[24] Siying Qin, Hang Yin, Celi Yang, et al. A magnetic protein biocompass[J]. Nature Materials, 2016, 15(2): 217-226.

[25] Justus Niemeyer, David Scheuring, Julian Oestreicher, et al. Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtii[J]. The Plant Cell, 2021, 33(9): 2935-2949.

[26] Alina S Bilal, Erik A Blackwood, Donna J Thuerauf, et al. Optimizing Adeno-Associated Virus Serotype 9 for Studies of Cardiac Chamber-Specific Gene Regulation[J]. Circulation, 2021, 143(20): 2025-2027.

[27] Enrique Balleza, J Mark Kim, Philippe Cluzel. Systematic characterization of maturation time of fluorescent proteins in living cells[J]. Nat Methods, 2018, 15(1): 47-51.

[28] Jean-Denis Pédelacq, Stéphanie Cabantous, Timothy Tran,et al. Engineering and characterization of a superfolder green fluorescent protein[J]. Nat Biotechnol, 2006, 24(1): 79-88.

[29] Kosman D, Reinitz J, Sharp D H. Automated assay of gene expression at cellular resolution[J]. Pac Symp Biocomput, 1998: 6-17.

[30] Jesse Stricker, Scott Cookson, Matthew R Bennett, et al. A fast, robust and tunable synthetic gene oscillator[J]. Nature,2008,456(7221):516-519.

[31] Marcel Tigges, Tatiana T Marquez-Lago, Jörg Stelling, et al. A tunable synthetic mammalian oscillator[J]. Nature, 2009, 457(7227): 309-312.

[32] Tal Danino,Octavio Mondragón-Palomino,Lev Tsimring,et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330.

[33] John E Dueber, Brian J Yeh, Kayam Chak, et al. Reprogramming control of an allosteric signaling switch through modular recombination[J]. Science. 2003, 301(5641): 1904-1908.

[34] Park S H, Zarrinpar A, Lim W A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms[J]. Science, 2003, 299(5609): 1061-1064.

[35] Subhayu Basu, Rishabh Mehreja, Stephan Thiberge, et al. Spatiotemporal control of gene expression with pulse-generating networks[J]. Proc Natl Acad Sci U S A, 2004, 101(17): 6355-6360.

[36] Ye Chen, Jae Kyoung Kim, Andrew J Hirning, et al. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989.

[37] Dae-Kyun Ro, Eric M Paradise, Mario Ouellet, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.

[38] 李金玉,杨珊,崔玉军,等,细菌最小基因组研究进展[J]. 遗传,2021, 43(02): 142-159.

[39] Monica Riley, Takashi Abe, Martha B Arnaud, et al. Escherichia coli K-12: a cooperatively developed annotation snapshot-2005[J]. Nucleic Acids Res, 2006, 34(1): 1-9.

[40] Endy D. Foundations for engineering biology[J]. Nature, 2005, 438(7067): 449-453.

[41] Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices[J]. Nat Biotechnol, 2008, 26(7): 787-793.

[42] Michal Galdzicki, Cesar Rodriguez, Deepak Chandra, et al. Standard biological parts knowledgebase [J]. PLoS One, 2011, 6(2): e17005.

[43] 常汉臣, 王琛, 王培霞, 等. DNA 组装技术[J]. 生物工程学报, 2019, 35(12): 2215-2226.

[44] Douglas Densmore, Timothy H-C Hsiau, Joshua T Kittleson, et al. Algorithms for automated DNA assembly[J]. Nucleic Acids Res, 2010, 38(8): 2607-2616.

[45] Shetty R P, Endy D, Knight Jr F. Engineering BioBrick vectors from BioBrick parts[J]. J Biol Eng, 2008, 2: 5.

[46] Smolke C D. Building outside of the box: iGEM and the BioBricks Foundation[J]. Nat Biotechnol, 2009, 27(12): 1099-1102.

[47] Cooling M T, Rouilly V. Misirli G, et al. Standard virtual biological parts: a repository of modular modeling components for synthetic biology[J]. Bioinformatics, 2010, 26(7): 925-931.

[48] Timothy S Ham, Zinovii Dmytriv, Hector Plahar, et al. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools[J]. Nucleic Acids Research, 2012, 40(18): el41-e141.

[49] Caruthers M H, Barone A D, Beaucage S L, et al.Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method[J]. Methods in enzymology, 1987, 154: 287-313.

[50] 闫汉, 肖鹏峰, 刘全俊, 等. DNA微阵列原位化学合成[J]. 合成生物学, 2021, 2(3): 354-370.

[51] 杨姗, 李金玉, 崔玉军, 等. DNA计算的发展现状及未来展望[J]. 生物工程学报,2021, 37(4): 1120-1130.

[52] Sam Behjati, Patrick S Tarpey.What is next generation sequencing?[J]. Arch Dis Child Educ Pract Ed, 2013, 98: 236-238.

[53] Pan Du, Warren A Kibbe, Simon M Lin. lumi: a pipcline for processing llumina microarray[J]. Bioinformatics, 2008, 24(13): 1547-1548.

[54] Siying Ma, Nicholas Tang, Jingdong Tian. DNA synthesis, assembly and applications in synthetic biology[J]. Curr Opin Chem Biol, 2012, 16(3-4): 260-267.

[55] David S Kong, Peter A Carr, Lu Chen, et al. Parallel gene synthesis in a microfluidic device[J]. Nucleic Acids Res, 2007, 35(8): e61.

[56] Thomas F. Knight. Idempotent Vector Design for Standard Assembly of BioBricks[D]. Boston: Massachusetts Institute of Technology, 2003.

[57] Phillips Ira, Pamela A. Silver. A New Biobrick Assembly Strategy Designed for Facile Protein Engineering[D]. Boston: Massachusetts Institute of Technology, 2006.

[58] Grünberg R, Arndt K, Müller K. Fusion Protein (Freiburg) Biobrick assembly standard[R]. [S.L.: s.n.], 2009.

[59] Engler C, Marillonnet S. Generation of families of construct variants using golden gate shuffling[J]. Methods Mol Biol, 2011, 729: 167-181.

[60] Daniel G Gibson, Lei Young, Ray-Yuan Chuang, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nat Methods, 2009, 6(5): 343-345.

[61] Daniel G Gibson, Hamilton O Smith, Clyde A Hutchison 3rd, et al. Chemical synthesis of the mouse mitochondrial genome[J]. Nat Methods, 2010, 7(11): 901-903.

[62] Jing Liang, Zihe Liu, Xi Z Low, et al. Twin-primer non-enzymatic DNA assembly: an officient and accurate multi-part DNA assembly method[J]. Nucleic Acids Res, 2017, 45(11): e94.

[63] Sheng Huang, Yali Yan, Fei Su, et al. Research progress in gene editing technology[J]. Front Biosci (Landmark Ed), 2021, 26(10): 916-927.

[64] Joung J K, Sander J.D. TALENs: a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 49-55.

[65] Rodolphe Barrangou, Christophe Fremaux, Hélène Deveau, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.

[66] Xiuhong Shao, Shaoping Wu, Tongxin Dou, et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana[J]. Plant Biotechnol J, 2020, 18(1): 17-19.

[67] Seoyun Yum, Minghao Li, Zhijian J Chen.Old dogs, new trick: classic cancer therapies activate cGAS[J].Cell Res, 2020.30(8): 639-648.

[68] Jinshan Zhang, Zhenyu Zhou, Jinjuan Bai, et al. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions[J]. Natl Sci Rev, 2020, 7(1): 102-112.

[69] Liyu Huang, Ru Zhang, Guangfu Huang, et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system[J]. The Crop Journal, 2018, 6(5): 475-481.

[70] Alexis C Komor, Yongjoo B Kim, Michael S Packer, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.

[71] Russell T Walton, Kathleen A Christie, Madelynn N Whittaker, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296.

[72] Bin Ren, Fang Yan, Yongjie Kuang, et al. Improved Base Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant[J]. Mol Plant, 2018, 11(4): 623-626.

[73] Matt Sternke, Katherine W Tripp, Doug Barrick.Consensus sequence design as a general strategy to create hyperstable, biologically active proteins[J]. Proc Natl Acad Sci U S A, 2019. 116(23): 11275-11284.

[74] Daan C Swarts, John van der Oost, Martin Jinek.Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2): 221-233.e4.

[75] Tyler S Halpin-Healy, Sanne E Klompe, Samuel H Sternberg, et al. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system[J]. Nature, 2020, 577(7789): 271-274.

[76] Lena Goshayeshi, Sara Yousefi Taemeh, Nima Dehdilani, et al. CRISPR/dCas9-mediated transposition with specificity and efficiency of site-directed genomic insertions[J]. Faseb j, 2021, 35(2): e21359.

[77] Aitao Li, Carlos G Acevedo-Rocha, Zhoutong Sun, et al. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction[J]. Chembiochem, 2018, 19(3): 221-228.

[78] Zhoutong Sun, Richard Lonsdale, Lian Wu, et al. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase[J]. ACS Catalysis, 2016, 6(3): 1590-1597.

[79] Jian Xu, Yixin Cen, Warispreet Singh, et al. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters[J]. J Am Chem Soc, 2019, 141(19): 7934-7945.

[80] 祁延萍, 朱晋, 张凯, 等. 定向进化在蛋白质工程中的应用研究进展[J]. 合成生物学, 2022, 3(6): 1081-1108.

[81] Paschke M. Phage display systems and their applications[J]. Appl Microbiol Biotechnol, 2006, 70(1): 2-11.

[82] Lee S Y, Choi J H, Xu Z. Microbial cell-surface display[J]. Trends Biotechnol, 2003, 21(1): 45-52.

[83] Valencia C A, Jianwei Zou, Rihe Liu. In vitro selection of proteins with desired characteristics using mRNA-display[J]. Methods, 2013, 60(1): 55-69.

[84] Kevin M Esvelt, Jacob C Carlson, David R Liu.A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344): 499-503.

[85] Webb B.Sali A. Comparative Protein Structure Modeling Using MODELLER[J]. Current Protocols in Bioinformatics, 2016, 54(1): 5.6.1-5.6.37.

[86] Julia Koehler Leman, Brian D Weitzner, Steven M Lewis, et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks[J]. Nat Methods, 2020, 17(7): 665-680.

[87] John Jumper, Richard Evans, Alexander Pritzel, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.

[88] Yeonhee Park, Geordan J Stukey, Ruta Jog, et al. Mutant phosphatidate phosphatase Pah1-W637A exhibits altered phosphorylation, membrane association, and enzyme function in yeast[J].J Biol Chem, 2022, 298(2): 101578.

[89] Daniel G Gibson, Gwynedd A Benders, Cynthia Andrews-Pfannkoch, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome[J]. Science, 2008, 319(5867): 1215-1220.

[90] Daniel G Gibson, John I Glass, Carole Lartigue, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56.

[91] He-Ming Xu, Ze-Xiong Xie, Duo Liu, et al. Design and synthesis of yeast chromosomes[J]. Yi Chuan, 2017, 39(10): 865-876.

[92] Farren J Isaacs, Peter A Carr, Harris H Wang, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040): 348-353.

[93] Denis A Malyshev, Kirandeep Dhami, Thomas Lavergne, et al. A semi-synthetic organism with an expanded genetic alphabet[J]. Nature, 2014, 509(7500): 385-388.

[94] Clyde A Hutchison 3rd, Ray-Yuan Chuang, Vladimir N Noskov, et al. Design and synthesis of a minimal bacterial genome[J]. Science, 2016, 351(6280): aad6253.

[95] Yangyang Shao, Ning Lu, Zhenfang Wu, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335.

[96] Shuichi Hoshika, Nicole A Leal, Myong-Jung Kim, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks[J]. Science, 2019, 363(6429): 884-887.

[97] Julius Fredens, Kaihang Wang, Daniel de la Torre, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569(7757): 514-518.

[98] Kai Papenfort, Elena Espinosa, Josep Casadesús, et al. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella[J]. Proc Natl Acad Sci U S A, 2015, 112(34): E4772-4781.

[99] Ashley G Rivenbark, Sabine Stolzenburg, Adriana S Beltran, et al. Epigenetic reprogramming of cancer cells via targeted DNA methylation[J]. Epigenetics, 2012, 7(4): 350-360.

[100] Petazzi P Menéndez, A Sevilla. CRISPR/Cas9-Mediated Gene Knockout and Knockin Human iPSCs[M/OL]. NewYork: Springer Us, 2022.

[101] Junjun Wu, Guocheng Du, Jian Chen, et al. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli[J]. Sci Rep, 2015, 5: 13477.

[102] 刘锦嵩,鄢盛恺.针对新型冠状病毒感染的基于CRISPR-Cas系统分子诊断及治疗策略研究[J]. 国际生物制品学杂志,2022, 45(1): 1-7.

[103] Can Xu, Nicolas Martin, Mei Li, et al. Living material assembly of bacteriogenic protocells[J]. Nature, 2022, 609(7929): 1029-1037.

[104] Jie Zhang, Lea G Hansen, Olga Gudich, et al. A microbial supply chain for production of the anti-cancer drug vinblastine[J]. Nature, 2022, 609(7926): 341-347.

[105] C J Paddon, P J Westfall, D J Pitera, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532.

[106] Stephanie Galanie, Kate Thodey, Isis J Trenchard, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100.

[107] Weishan Wang, Shanshan Li, Zilong Li, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nat Biotechnol, 2020, 38(1): 76-83.

[108] Krzysztof Krawezyk, Shuai Xue, Peter Buchmann, et al. Electrogenetic cellular insulin release for real-time glycemic control in type I diabetic mice[J]. Science, 2020, 368(6494): 993-1001.

[109] Nissim L, Bar-Ziv R H. A tunable dual-promoter integrator for targeting of cancer cells[J]. Mol Syst Biol, 2010, 6: 444.

[110] Cong T Trinh, Pornkamol Unrean, Friedrich Srienc.Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses[J].Appl Environ Microbiol, 2008, 74(12): 3634-3643.

[111] Eric J Steen, Yisheng Kang, Gregory Bokinsky, et al. Microbial production of fatty-acid- derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280): 559-562.

[112] Wensi Meng, Yongjia Zhang, Liting Ma. Non-Sterilized Fermentation of 2, 3-Butanediol with Seawater by Metabolic Engineered Fast-Growing Vibrio natriegens[J]. Frontiers in Bioengineering and Biotechnology, 2022, 7(10).

[113] Shota Atsumi, Taizo Hanai, James C Liao. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89.

[114] Chiranjib Banerjee, Kashyap K Dubey, Pratyoosh Shukla. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges[J]. Front Microbiol, 2016, 7: 432.

[115] Tao Cai, Hongbing Sun, Jing Qiao, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J].Science, 2021, 373(6562): 1523-1527.

[116] Qiupeng Lin, Yuan Zong, Chenxiao Xue, et al. Prime genome editing in rice and wheat[J]. Nat Biotechnol, 2020, 38(5): 582-585.

[117] Sarah P F Bonny, Graham E Gardner, David W Pethick, et al. What is artificial meat and what does it mean for the future of the meat industry?[J]. Journal of Integrative Agriculture, 2015, 14(2): 255-263.

[118] Nick Goldman, Paul Bertone, Siyuan Chen, et al.Towards practical, high-capacity, low- maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77-80.

[119] Lifu Song, Feng Geng, Zi-Yi Gong, et al. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly [J]. Nat Commun, 2022, 13(1): 5361.

[120] 滕越, 杨姗, 刘芮存. 基于生物分子的神经拟态计算研究进展[J]. 科学通报, 2021, 66(31): 3944-3951.