1.2.1 发现问题
【案例】利用数据的表象追踪问题根源
某网店今年花费大量资金研发、投放5款新产品,第1季度的退货数据如表1-1所示。店主要求运营人员对数据进行分析,给出结论和建议。
表1-1
【分析】通过对5款产品的退货数进行求和,然后排序,最后得出5款产品的退货数占比及降序排列结果,可以发现连衣裙4和连衣裙2的占比很高,这两款产品的退货数占5款产品退货数总和的80%,如表1-2所示。
表1-2
店主通过收集、整理7天无理由退货的相关数据,让代加工厂做质量鉴定和分析。发现连衣裙4和连衣裙2存在吊牌字迹不清晰、产品面料手感不佳等问题。代加工厂改进了这两款产品的质量,客户好评度逐渐提升,退货量也慢慢降低了。
由此可见,在商务活动中,我们不能只看数据的表象,要透过数据表象寻找隐藏在数据背后的问题,最后找到解决问题的方法和措施。
【案例】利用数据对比分析发现商务费用问题
某公司生产EH75和MH98 这两款产品,两款产品1~6月的销量、销售指导价和商务费用总额如表1-3所示。公司要求找出商务费用率高于8%的产品,然后进一步挖掘商务费用高的原因,从而降低商务费用。
表1-3
【分析】要了解一款产品的商务费用是否高于设定的正常值,应该计算每款产品每月的商务费用率。因此,分析时先计算每款产品的单品费用额和商务费用率,如表1-4所示。
表1-4
从表1-4可以看出,EH75产品2月的商务费用率为20%,MH98产品5月的商务费用率为19%,均远超公司设定的8%。在识别出这两个月为异常点后,仔细查找原因,发现EH75产品在2月的销量太低,应该提高销量;MH98产品在5月的销量虽然不算低,但商务费用太高,需要降低商务费用。
在进行商务数据分析时,为了让运营人员能够很直观地看出两款产品每月的商务费用率与设定的商务费用率的对比情况,数据分析人员通常使用柱形图对商务费用率进行展示,如图1-3所示。
图1-3