电动汽车动力系统安全性设计与工程应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.4.2 电驱动总成技术

驱动汽车行驶的机械力源主要有来自发动机输出的机械力和电机输出的机械力两种,本章节讲述的是基于电机作为机械力源的电驱动总成技术。

1. 电驱动总成主要技术要求

作为电动汽车的核心部件,电驱动总成的性能、效率、尺寸、重量、NVH、可靠性等直接关系到车辆性能、驾驶体验甚至是整体效率。

由于电机工作的高效区覆盖范围远优于内燃机高效区范围,以及电机自身的启动力矩大、转速范围广、可反转的驱动特性优点,变速器仅需单档或双档即可实现燃油汽车多档变速器的输出特性。

电驱动总成集成化具有降低成本、提高效率、便于整车布置等诸多优势;部件工艺优化,例如扁线电机、SiC模组替代、油冷电机应用等,可实现降本增效。

2. 电驱动总成的电机种类

电驱动总成的主流电机应用为永磁同步电机和交流异步电机。

永磁同步电机以永磁体提供励磁,使电机结构较为简单,降低了加工和装配成本,且省去了集电环和电刷,提高了电机运行的可靠性;又因无需励磁电流带来的励磁损耗,提高了电机效率和功率密度。缺点是磁钢存在退磁问题,造价也较高。

交流异步电机相比永磁电机,由于励磁源不是永磁体,因此异步电机可工作在较高温度下,不需要考虑退磁的风险,且成本相对较低,此外不工作时的拖滞阻力较小。缺点是由于转子绕组需要励磁,耗电量较大,增加了铜耗,整体效率较低。

目前市场上的电动汽车都配置了永磁同步电机作为主驱应用;对于部分四驱车型,为降低整车综合能耗,也有采用交流异步电机作为辅驱应用,并逐渐成为四驱车型动力系统选型的趋势。

3. 电驱动总成集成化

将电机、电机控制器和变速器集成在一起,可以减少壳体用料、线束及插接器,从而节省布置空间、减轻重量、降低成本;动力总成集成化,不仅提高了系统效率,还降低了供应商层面的管理成本、沟通成本,也减少了原有分散采购带来的配套成本等。

随着集成化程度的逐渐深化,动力总成从简单的部件拼接,向着一体化设计融合发展。电机和减速器作为动力输出模块,其内部的零部件和结构设计也在变化,例如壳体共用、电机输出轴和变速器输入轴共用等。

与此同时,整车电压电控的相关模块,例如车载充电机(On Board Charger,OBC)、DC/DC变换器、电压分配单元(Power Distribution Unit,PDU)等也向集成化发展,出现独立的三合一电源总成(集成OBC、DC/DC变换器、PDU),以及与电机、电机控制器、变速器等集成的五合一动力总成、八合一动力总成等。