异质性环境规制、FDI与中国工业绿色技术创新效率研究
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

一、绿色技术创新效率的测度

测度绿色技术创新效率的方法主要有单一指标测度、随机前沿分析(Stochastic Frontier Analysis,SFA)和数据包络分析(Data Envelopment Analysis,DEA)方法。其中,单一指标测度主要是以绿色技术创新成果为依据,利用绿色技术专利的单一指标衡量绿色技术创新效率的变化。例如,王峰正等(2018)立足于不同的创新对象,把绿色技术创新分为绿色产品创新和绿色工艺创新,并针对两种创新分别选取单一指标(政府质量、环境规制),研究其对企业绿色技术创新的影响。由于单一指标测度方法在测算过程中存在指标选取的局限性,不能全面反映绿色技术创新效率水平,因此该方法使用较少。有些学者通过随机前沿分析构造生产前沿面,使用距离函数测度决策单元(Decision-Making Unit,DMU)的相对有效性。

在SFA方法的使用方面,肖黎明等(2019)对中国的绿色创新效率进行测度,并结合耦合协调度模型对绿色创新效率与生态福利绩效耦合协调度进行研究;何枫等(2004)对中国各地区的技术效率进行了测算,并分析其变化趋势。随机前沿分析方法是参数方法中的一种,需要事先设定生产函数形式,能够将误差项分解为随机误差项和技术无效率项,但是单一产出的局限以及函数设定的不当容易导致分析结果不准确。

DEA则是基于非参数基础,直接通过样本构造生产前沿面,避免生产函数的设定,运用线性规划求解决策单元的相对效率值。由于DEA无须事先假定具体生产函数形式,相对于SFA更具优势,该方法在近些年来被广泛应用于效率或绩效的测度,通过DEA测度绿色技术创新效率的研究也层出不穷。在实际应用中,韩晶(2012)、孔晓妮(2015)等采用传统DEA方法测度了中国省域的绿色创新效率。但是,传统DEA方法强调投入与产出要素的同比例、同径向变化,这与现实情况不符。为克服传统DEA方法的不足,Tone(2001)提出超效率SBM(Slack Based Model),冯志军(2013)、王惠等(2015)、吴新中等(2018)均利用该模型测评绿色创新效率,并根据所研究内容进行具体分析。随着DEA在绿色技术创新效率方面日渐完善,部分学者进一步考虑到绿色创新过程中存在系统自身内部运行机制和转化黑箱的细节后,提出基于创新价值链和网络DEA模型对效率进行测算和分解,将绿色创新看成由多个子阶段组成,并对总体效率产生影响(肖仁桥等,2014;Inge,2012;罗良文等,2017)。其中,Nasierowski等(2012)运用DEA方法对绿色创新效率进行测算,通过2005年和2009年绿色创新效率结果分析了创新过程中绿色创新投入和产出。张江雪等(2012)运用四阶段DEA模型对2009年中国各省份工业企业技术创新效率进行了测算,发现东部地区平均技术创新效率高于中西部地区。