引言
数学以其自身模式和精妙之处区别于其他学科。这门学科的发展并不依赖外在的物质世界,比如铅的重量、天空的蓝色、火药的可燃性……数学上取得的进步往往源于纯粹的洞察力和逻辑。直至今日,数学家们在谱写属于他们的数学奇迹时也不过是用纸和笔。
实验表明,乌鸦、大鼠、黑猩猩等许多动物的计数能力都令人惊叹。这么看来,要说早期人类也有不掰手指做心算的本事,倒在情理之中。
毕达哥拉斯是最早的数学先驱之一。约公元前580年,他出生于古希腊的萨摩斯岛,后来在意大利南部的克罗托内创办了一所数学学校。在这所学校里,他的追随者们戒食豆子、不许碰白色羽毛,也不许在阳光下撒尿。虽然不是他创造了著名的毕达哥拉斯定理(a2+b2=c2),但他证明了这一定理。事实上,他引入了“证明”的概念,这是数学的基本原则之一。在数学这门学科中,证明即一切;反之,科学无法证明任何东西。科学家能够推翻某一观点,但永远无法证明它。
证明是费马大定理的关键所在。在讨论毕达哥拉斯定理的那一章(1)页边空白处,法国律师皮埃尔·德·费马写道:当整数n大于2时,关于x、y、z的方程xn+yn=zn没有正整数解。除此之外,他还写了一句话:“我发现了一个绝妙的证明方法,不过这面的页边实在太窄了,写不下。”不过,他的这一说法直到1665年他去世后,才为世人所知。之后长达330年的时间里,杰出的数学家们苦寻他的证法,却徒劳无功。直到1994年,安德鲁·怀尔斯终于解决了这个难题。但是,怀尔斯的证明足足列了150页,还使用了在费马那个时代还未知的数学方法。因此,我们可能永远都不会知道当时的费马是否说了真话。
数学常用于解谜。比萨的莱昂纳多(以“斐波那契”这个名字为人所知)在《计算之书》(Liber Abaci,1202)中以谜题的形式引入了一串新奇的数列。他让读者们想象有一对幼兔,它们长大要一个月的时间,然后再过一个月,就能生下一对小兔子。而它们生下的这对小兔子,长大又要一个月。那么问题来了:“每个月的月底会有几对兔子?”答案是1,1,2,3,5,8,13,21,34,…。这个数列可以无限递推,其中每一项都等于前两项之和。大自然中,斐波那契数列随处可见。比方说,花通常有3、5或8片花瓣;松果上的鳞片通常在顺时针方向呈现8条螺旋线,在逆时针方向呈现13条螺旋线。斐波那契才智过人,他还学会了阿拉伯数字系统,并将其引入西方世界。
如果没有这些前辈,紧随其后的数学拓荒者们就永远都无法获得更多发现。没有斐波那契,牛顿和莱布尼茨就不会发明微积分;没有微积分,欧拉、高斯、拉格朗日和帕斯卡的许多想法也无法为人所知;没有这些想法,伽罗瓦、庞加莱、图灵和米尔扎哈尼等人的研究也将举步维艰……这样的例子不胜枚举。当然,更别提费马大定理的证明了。
所有这些数学发现,包括斐波那契的兔子和他的数列,都是在前人的研究基础上不断向前发展、向外延伸的。正因如此,数学还有着更广阔的疆域,待人们探索发现。