2.3 元宇宙与人工智能
尽管人工智能一词的使用颇为普遍,但是不同的人对它的定义有着不同的理解。一个相对标准的定义是,人工智能是关于智能主体的研究与设计的学问,其中“智能主体”是指一个可以观察周遭环境并做出行动以实现某个目标的系统。
人工智能技术使机器能够从经验中学习并执行各种任务。人工智能于1956年首次提出。近年来,它在各种应用场景中都体现了卓越的性能,包括自然语言处理(Natural Language Processing,NLP)、计算机视觉(Computer Vision,CV)和推荐系统(Recommender System,RS)。
通俗地讲,我们可以简单地认为人工智能就是机器学习,即让机器学习数据,并利用所习得的知识解决某个具体问题。经过近二十年的迅猛发展,机器学习技术已经在很多领域展现出远超专家系统[1]和统计模型的效果。
得益于超强算力的支持,机器学习技术所采用的模型也变得更加复杂,从回归分析到深度学习(例如卷积神经网络(CNN)和递归神经网络(RNN)),从监督或无监督学习到强化学习。典型的监督学习(supervised learning)算法包括线性回归、随机森林和决策树;无监督学习(unsupervised learning)算法主要有K-means、主成分分析(PCA)和奇异值分解(SVD);而流行的强化学习(reinforcement learning)算法包括Q-learning、Sarsa和策略梯度等。
这些算法在计算机视觉、语音识别、机器翻译、机器写作等领域表现出了惊人的性能,并且很多应用已经得到市场的认可。最初的Generative Pre-trained Transformer(GPT)处理1.1亿个参数,最新的Google Brain转换器将处理超过1万亿个参数。在相对较短的时间内,这些神经网络的规模有了惊人的增长。
在创建这些先进的神经网络之前,人工智能已经取得了令人印象深刻的进步:Alexa中的语音识别、机器视觉(例如用于特斯拉的自动驾驶系统或谷歌图像识别)或可以打败人类的算法(AlphaGo[2]),都在社交媒体上引起了轰动。但与AI的未来相比,所有这些已经实现的应用都显得非常基础。
毫无疑问,新兴的元宇宙的主要特征之一就是将会产生海量的且更为复杂的数据,这为人工智能的进一步发展提供了机会,人工智能被用来在增强现实和虚拟现实中创造更智能、让人身临其境的世界只是时间问题。人工智能可以以极快的速度读取并解析大量数据。用户可以使用AI进行决策(就像大多数企业应用程序一样),也可以将AI与自动化相结合。元宇宙将结合虚拟现实(AR或VR)技术与人工智能技术,创建出可扩展且更接近现实世界的虚拟世界。
[1] 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域的问题。
[2] AlphaGo(阿尔法围棋)是第一个击败人类职业围棋选手、战胜围棋世界冠军的人工智能机器人,由谷歌旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。