5.4 总结
本章作为对文章[12]的补充,将文章[13]中由于篇幅而精简掉的理论部分进行了完善,帮助读者有更直观的理解。针对移动平台的性能要求,在性能与精度上进行了一些取舍,查表实现水平面裁切与使用多项式拟合后,最终生成的指令数减少了接近50%,最终画面展示效果如图5.10所示。
图5.10 最终画面展示效果
[1] Engel, Wolfgang, ed. GPU Pro 5: advanced rendering techniques[M]. CRC Press, 2014.
[2] HEITZ E, DUPUY J, HILL S, et al. Real-Time Polygonal-Light Shading with Linearly Transformed Cosines[J/OL]. ACM Trans. Graph, 2016, 35(4)[2019-07-08].
[3] WANG J,RAMAMOORTHI R. Analytic Spherical Harmonic Coefficients for Polygonal Area Lights[J/OL]. ACM Trans. Graph, 2018, 37(4)[2019-06-25].
[4] ERIC H. Geometric Derivation of the Irradiance of Polygonal Lights[D].Unity Technologies, 2017.
[5] IWANICKI M.Deriving the Analytical Formula for A Diffuse Response from A Polygonal Light Source[Z].[日期不详].
[6] HEITZ E, DUPUY J, HILL S, et al. Real-Time Polygonal-Light Shading with Linearly Transformed Cosines[J/OL]. ACM Trans. Graph, 2016, 35(4)[2019-07-08].
[7] Sébastien L, DE Rousiers C. Moving frostbite to physically based rendering[C]. In SIGGRAPH 2014 Conference, Vancouver, 2014.
[8] HILL S, HEITZ E. Real-Time Area Lighting: A Journey from Research to Production[C]. In ACM SIGGRAPH Courses, 2016.
[9] INIGO QUILEZ.Sphere Ambient Occlusion[Z/OL](2006)[2021-02-25].
[10] SNYDER, JOHN M. Area light sources for real-time graphics[R]. Microsoft Research, Redmond, WA, USA, Tech. Rep. MSR-TR-96-11 (1996).
[11] BRIAN K,Epic Games.Real shading in unreal engine 4[J].Proc.Physically Based Shading Theory Practice 4,no.3 (2013).
[12] HEITZ E, DUPUY J, HILL S, et al. Real-Time Polygonal-Light Shading with Linearly Transformed Cosines[J/OL]. ACM Trans. Graph, 2016, 35(4)[2019-07-08].
[13] Engel, Wolfgang, ed. GPU Pro 5: advanced rendering techniques[M]. CRC Press, 2014.