新型无卤阻燃硬质聚氨酯泡沫材料
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Kabakci E, Sayer O, Suvaci E, et al. Processing⁃structure⁃property relationship in rigid polyurethane foams [J]. Journal of Applied Polymer Science, 2017, 134(21): 44870.

[2] Francisco A P,Harner T, Eng A. Measurement of polyurethane foam⁃air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring [J]. Chemosphere, 2017, 174: 638⁃642.

[3] Kim M W, Kwon S H, Park H,et al.Glass fiber and silica reinforced rigid polyurethane foams[J]. Express Polymer Letters, 2017, 11(5): 374⁃382.

[4] Loureiro M V, Lourenco M J, De S A,et al. Amino⁃silica microcapsules as effective curing agents for polyurethane foams [J]. Journal of materials science, 2017, 52(9): 5380⁃5389.

[5] Abdessalam H, Abbes B, Abbes F, et al. Prediction of acoustic properties of polyurethane foams from the macroscopic numerical simulation of foaming process [J]. Applied Acoustics, 2017, 120: 129⁃136.

[6] Chaydarreh K C, Shalbafan A, Welling J. Effect of ingredient ratios of rigid polyurethane foam on foam core panels properties [J]. Journal of Applied Polymer Science, 2017, 134(17): 44722.

[7] Sipaut C S, Halim H A, Jafarzadeh M. Processing and properties of an ethylene⁃vinyl acetate blend foam incorporating ethylene⁃vinyl acetate and polyurethane waste foams [J]. Journal of Applied Polymer Science, 2017, 134(16): 44708.

[8] Zhang H, Fang W Z, Li Y M, et al. Experimental study of the thermal conductivity of polyurethane foams [J]. Applied Thermal Engineering, 2017, 115: 528⁃538.

[9] Keshavarz M, Zebarjad S M, Daneshmanesh H, et al. On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels [J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 2037⁃2048.

[10] Chu CC, Yeh S K, Peng S P, et al. Preparation of microporous thermoplastic polyurethane by low⁃temperature supercritical CO2 foaming [J]. Journal of Cellular Plastics, 2017, 53(2): 135⁃150.

[11] 孙刚, 刘预, 冯芳, 等. 聚氨酯泡沫材料的研究进展[J]. 材料导报, 2006, 20(3): 29⁃33.

[12] 李来丙, 龚必珍, 罗耀华. 可膨胀石墨对聚异氰酸酯⁃聚氨酯泡沫材料阻燃性能的影响[J]. 石油化工, 2008, 37(2): 178⁃182.

[13] Rattanapan S, Pasetto P, Pilard J F. Polyurethane foams from oligomers derived from waste tire crumbs and polycaprolactone diols [J]. Journal of Applied Polymer Science, 2016, 133(47): 44251.

[14] Zarzyka I. Preparation and characterization of rigid polyurethane foams with carbamide and borate groups [J]. Polymer International, 2016, 65(12): 1430⁃1440.

[15] Zharinova E, Heuchel M, Weigel T, et al. Water⁃Blown Polyurethane Foams Showing a Reversible Shape⁃Memory Effect [J]. Polymers, 2016, 20(12): 170.

[16] 丁雪佳, 薛海蛟, 李洪波, 等. 硬质聚氨酯泡沫塑料研究进展[J]. 化工进展, 2009, 28(2): 278⁃282.

[17] Levchik S V, Weil E D. Thermal decomposition, combustion and fire⁃retardancy of polyurethanes⁃ a review of the recent literature [J]. Polymer International, 2004, 53(11): 1585⁃1610.

[18] 刘益军. 聚氨酯树脂及其应用[M]. 北京: 化学工业出版社, 2011: 100⁃167.

[19] 陈勇军, 李斌, 刘岚, 等. 阻燃型硬质聚氨酯泡沫塑料研究进展[J]. 塑料科技, 2012, 40(3): 103⁃109.

[20] 刘国胜, 冯捷, 郝建薇, 等. 硬质聚氨酯泡沫塑料的阻燃、应用与研究进展[J]. 中国塑料, 2011, 25(11): 5⁃9.

[21] 周晓谦, 任晶鑫, 李庆雨, 等. 改性条件对阻燃型硬质聚氨酯泡沫塑料性能的影响[J]. 中国塑料, 2012, 26(3): 71⁃74.

[22] 方禹声, 朱吕民. 聚氨酯泡沫塑料[M]. 北京: 化学工业出版社, 1984: 107.

[23] Athanasopoulos N, Baltopoulos A, Matzakou M, et al. Electrical conductivity of polyurethane/MWCNT nanocomposite foams [J]. Polymer Composites, 2012, 33(8): 1302⁃1312.

[24] Harikrishnan G, Singh S N, Kiesel E, et al. Nanodispersions of carbon nanofiber for polyurethane foaming [J]. Polymer, 2010, 51(15): 3349⁃3353.

[25] Chattopadhyay D K, Webster D C. Thermal stability and flame retardancy of polyurethanes [J]. Progress in Polymer Science, 2009, 34(10): 1068⁃1133.

[26] Kulesza K, Pielichowski K. Thermal decomposition of bisphenol A⁃based polyetherurethanes blown with pentane Part Ⅱ—Influence of the novel NaH2PO4/NaHSO4 flame retardant system [J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1⁃2): 249⁃253.

[27] Patrick J F, Sottos N R, White S R. Microvascular based self⁃healing polymeric foam [J]. Polymer, 2012, 53(19): 4231⁃4240.

[28] König A, Kroke E. Flame retardancy working mechanism of methyl⁃DOPO and MPPP in flexible polyurethane foam [J]. Fire and Materials, 2012, 36(1): 1⁃15.

[29] Chen M J, Shao Z B, Wang X L, et al. Halogen⁃free flame⁃retardant flexible polyurethane foam with a novel nitrogen⁃phosphorus flame retardant [J]. Industrial & Engineering Chemistry Research, 2012, 51(29): 9769⁃9776.

[30] Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide⁃polyurethane nanofibrous separators with high performance for lithium ion batteries [J]. Electrochimica Acta, 2015, 154: 219⁃226.

[31] Gu L M, Ge Z, Huang M H, et al. Halogen⁃free flame⁃Retardant waterborne polyurethane with a novel cyclic structure of phosphorus⁃nitrogen synergistic flame retardant [J]. Journal of Applied Polymer Science, 2015, 132(3): 41288.

[32] Jimenez M, Lesaffre N, Bellayer S, et al. Novel flame retardant flexible polyurethane foam: plasma induced graft⁃polymerization of phosphonates [J]. RSC Advances, 2015, 5(78): 63853⁃63865.

[33] Sonnenschein M F, Wendt B L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships [J]. Polymer, 2013, 54(10): 2511⁃2520.

[34] Tan S Q, Abraham T, Ference D, Macosko CW. Rigid polyurethane foams from a soybean oil⁃based polyol [J]. Polymer, 2011, 52(13): 2840⁃2846.

[35] Usta N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter [J]. Journal of Applied Polymer Science, 2012, 124(4): 3372⁃3382.

[36] Price D, Liu Y, Hull T R, et al. Burning behavior of foam/cotton fabric combinations in the cone calorimeter [J]. Polymer Degradation and Stability, 2002, 77(2): 213⁃220.

[37] Wang Z Z, Qu B J, Fan W C. Combustion characteristicsof halogen⁃free flame retarded polyethylene contain ingmagnesium hydroxide and some synergists [J]. Journal of Applied Polymer Science, 2001, 81(1): 206⁃214.

[38] Cui Y, Liu X L, Tian Y M,et al. Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam [J]. Colloids and Surfaces A⁃Physicochemical and Engineering Aspects, 2012, 414: 274⁃280.

[39] 袁才登, 曾海唤, 王健, 等. 复合无机无卤阻燃剂改性聚氨酯泡沫及性能研究[J]. 高校化学工程学报, 2014, 28(6): 1372⁃1377.

[40] Danowska M, Piszczyk L, Strankowski M, et al. Rigid polyurethane foams modified with selected layered silicate nanofillers [J]. Journal of Applied Polymer Science, 2013, 130(4): 2272⁃2281.

[41] Yang H Y, Wang X, Song L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams [J]. Polymers for Advanced Technologies, 2014, 25(9): 1034⁃1043.

[42] Zhang A Z, Zhang Y H, Lv F Z, et al. Synergistic effects of hydroxides and dimethyl methylphosphonate on rigid halogen⁃free and flame⁃retarding polyurethane foams [J]. Journal of Applied Polymer Science, 2013, 128(1): 347⁃353.

[43] Chai H, Duan Q L, Jiang L, et al. Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material [J]. Journal of Thermal Analysis and Calorimetry, 2019,135:2857⁃2868.

[44] 陶亚秋, 周云, 祝社民. 无卤添加型阻燃剂对硬质聚氨酯泡沫阻燃性能研究[J]. 化工新型材料, 2012, 40(8): 123⁃125.

[45] Thirumal M, Singha N K, Khastgir D, et al. Halogen⁃free flame retardant rigid polyurethane foams:Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams [J]. Journal of Applied Polymer Science, 2010, 116(4): 2260⁃2268.

[46] Thirumal M, Khastgir D, Nando G B, et al. Halogen⁃free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties [J]. Polymer Degradation and Stability, 2010, 95(6): 1138⁃1145.

[47] 刘源,吴博,泽宇,等.全水发泡聚氨酯/Al(OH)3阻燃硬质泡沫的研究[J].塑料工业,2015,43(02):89⁃93.

[48] Zhang A Z, Zhang Y H, Lv F Z, et al. Synergistic effects of hydroxides and dimethyl methylphosphonate on rigid halogen⁃free and flame⁃retarding polyurethane foams [J]. Journal of Applied Polymer Science, 2013, 128(1): 347⁃353.

[49] Li Y, Zou J, Zhou S T, et al. Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water⁃blown semi⁃rigid polyurethane foam[J]. Journal of Applied Polymer Science, 2014, 131(3): 39885.

[50] Modesti M, Lorenzetti A. Halogen⁃free flame retardants for polymeric foams [J]. Polymer Degradation and Stability, 2002, 78(1): 167⁃173.

[51] Shi L, Li Z M, Xie B H, et al. Flame retardancy of different⁃sized expandable graphite particles for high⁃density rigid polyurethane foams [J]. Polymer International, 2006, 55(8): 862⁃871.

[52] Bian X C, Tang J H, Li Z M. Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite [J]. Journal of Applied Polymer Science, 2008, 109(3): 1935⁃1943.

[53] Bian X C, Tang J H, Li Z M. Flame retardancy of whisker silicon oxide/rigid polyurethane foam composites with expandable graphite [J]. Journal of Applied Polymer Science, 2008, 110(6): 3871⁃3879.

[54] Meng X Y, Ye L, Zhang X G, et al. Effects of expandable graphite and ammonium polyphosphate on the flame⁃retardant and mechanical properties of rigid polyurethane foams [J]. Journal of Applied Polymer Science, 2009, 114(2): 853⁃863.

[55] Ye L, Meng X Y, Ji X, et al. Synthesis and characterization of expandable graphite⁃poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams [J]. Polymer Degradation and Stability, 2009, 94(6): 971⁃979.

[56] Bian X C, Tang J H, Li Z M, et al. Dependence of flame⁃retardant properties on density of expandable graphite filled rigid polyurethane foam [J]. Journal of Applied Polymer Science, 2007, 104(5): 3347⁃3355.

[57] Hu X M, Wang D M. Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants [J]. Journal of Applied Polymer Science, 2013, 129(1): 238⁃246.

[58] Li A, Yang D D, Li H N, et al. Flame⁃retardant and mechanical properties of rigid polyurethane foam/MRP/Mg(OH)2/GF/HGB composites [J]. Journal of Applied Polymer Science, 2018, 135(31): 46551.

[59] Cao Z J, Dong X, Fu T, et al. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams [J]. Polymer Degradation and Stability, 2017, 136: 103⁃111.

[60] Xu W, Wang G J, Zheng X R. Research on highly flame⁃retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants [J]. Polymer Degradation and Stability, 2015, 111: 142⁃150.

[61] Xu W Z, Liu L, Wang S Q, et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame⁃retardant properties of rigid polyurethane foam [J]. Journal of Applied Polymer Science, 2015, 132(47): 42842.

[62] Cui Y, Liu X L, Tian Y M, et al. Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414: 274⁃280.

[63] Modesti M, Lorenzetti A, Besco S, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behavior of polyurethane nanocomposite foams [J]. Polymer Degradation and Stability, 2008, 93(12): 2166⁃2171.

[64] Thirumal M, Khastgir D, Nando G B, et al. Halogen⁃free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties [J]. Polymer Degradation and Stability, 2010, 95(6): 1138⁃1145.

[65] Ye L, Meng X Y, Liu X M, et al. Flame⁃retardant and mechanical properties of high⁃density rigid polyurethane foams filled with decabrominated dipheny ethane and expandable graphite [J]. Journal of Applied Polymer Science, 2009, 111(5): 2372⁃2380.

[66] Harper, Jack R. Flame retardant rigid polyurethane syntactic foam [P]. US4082702. 1978⁃04⁃04.

[67] Denecker C, Liggat J J, Snape C E. Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams [J]. Journal of Applied Polymer Science, 2006, 100(4): 3024⁃3033.

[68] 史以俊, 罗振扬, 何明, 等. 含磷阻燃剂对聚氨酯硬泡燃烧特性影响的研究[J]. 聚氨酯工业, 2009, 24(5): 23⁃25.

[69] Thirumal M, Singha N K, Khastgir D, et al. Halogen⁃free flame retardant rigid polyurethane foams:Effect of alumina trihydrate and triphenylphosphate on theproperties of polyurethane foams [J]. Journal of Applied Polymer Science, 2010, 116(4): 2260⁃2268.

[70] Li Y, Zou J, Zhou S T, et al. Effect of Expandable Graphite Particle Size on the Flame Retardant, Mechanical, and Thermal Properties of Water⁃Blown Semi⁃Rigid Polyurethane Foam [J]. Journal of Applied Polymer Science, 2014, 131(3): 39885.

[71] 钱立军. 新型阻燃剂制造与应用[M]. 北京: 化学工业出版社, 2012: 96⁃112.

[72] Wang Z Z, Li X Y. Mechanical properties and flame retardancy of rigid polyurethane foams containing SiO2 nanospheres/graphene oxide hybrid and dimethyl methylphosphonate [J]. Polymer⁃Plastics Technology and Engineering, 2018, 57(9): 884⁃892.

[73] Zheng X R, Wang G J, Xu W. Roles of organically⁃modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam [J]. Polymer Degradation and Stability, 2014, 101: 32⁃39.

[74] Liu D Y, Zhao B, Wang J S, et al. Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam [J]. Journal of Applied Polymer Science, 2018, 135(27): 46434.

[75] Qian L J, Feng F F, Tang S. Bi⁃phase flame⁃retardant effect of hexa⁃phenoxy⁃ cyclotriphosphazene on rigid polyurethane foams containing expandable graphite [J]. Polymer, 2014, 55: 95⁃101.

[76] Yang R, Wang B, Han X F, et al. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate [J]. Polymer Degradation and Stability, 2017, 144: 62⁃69.

[77] Liu S, Fang Z P, Yan H Q, et al. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO [J]. RSC Advances, 2016, 6(7): 5288⁃5295.

[78] Liu Y L, He J Y, Yang R J. The preparation and properties of flame⁃retardant polyisocyanurate⁃polyurethane foams based on two DOPO derivatives [J]. Journal of Fire Sciences, 2016, 34(5): 431⁃444.

[79] Gaan S, Liang S Y, Mispreuve H, et al. Flame retardant flexible polyurethane foams from novel DOPO⁃phosphonamidate additives [J]. Polymer Degradation and Stability, 2015, 113: 180⁃188.

[80] Zhang M, Luo Z Y, Zhang J W. Effects of a novel phosphorus⁃nitrogen flame retardant on rosin⁃based rigid polyurethane foams [J]. Polymer Degradation and Stability, 2015, 120: 427⁃434.

[81] Yang R, Hu W T, Xu L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate [J]. Polymer Degradation and Stability, 2015, 122: 102⁃109.

[82] Yuan Y, Yang H Y, Yu B, et al. Phosphorus and nitrogen⁃containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites [J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10813⁃10822.

[83] Wang X L, Yang K K, Wang Y Z. Physical and chemical effects of diethyl N,N⁃diethanolaminomethylphosphate on flame retardancy of rigid polyurethane foam [J]. Journal of Applied Polymer Science, 2001, 82(2): 276⁃282.

[84] Zatorski W, Brzozowski Z K, Kolbrecki A. New Developments in Chemical Modification of Fire⁃safe Rigid Polyurethane Foams [J]. Polymer Degradation and Stability, 2008, 93(11): 2071⁃2076.

[85] Chen⁃Yang Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate)cyclotriphosphazene⁃containing polyurethanes [J]. Journal of Applied Polymer Science, 2003,90(5): 1357⁃1364.

[86] Yuan C Y, Chen S Y, Tsai C H, et al. Thermally stable and flame⁃retardant aromatic phosphate and cyclotriphosphazene⁃containing polyurethanes: synthesis and properties [J]. Polymers for Advanced Technologies, 2005, 16(5): 393⁃399.

[87] Heinen M, Gerbase A E, Petzhold C L. Vegetable oil⁃based rigid polyurethanes and phosphorylated flame retardants derived from epoxydized soybean oil [J]. Polymer Degradation and Stability, 2014, 108: 76⁃86.

[88] Kim Y S, Davis R, Cain A A, et al. Development of layer⁃by⁃layer assembled carbon nanofiber⁃filled coatings to reduce polyurethane foam flammability [J]. Polymer, 2011, 52(13): 2847⁃2855.

[89] 胡华昌. 轻质隔墙板: 中国, 94200907.X[P]. 1994⁃01⁃05.

[90] 马仝, 胡玉海, 逢忠强. 一种六面包覆型阻燃聚氨酯保温复合板: 中国, 201220017493.6[P]. 2012⁃01⁃16.