构建企业级推荐系统:算法、工程实现与案例分析
上QQ阅读APP看书,第一时间看更新

4.8 本章小结

本章对协同过滤算法原理、工程实践进行了介绍,在工程实践上既讲解了批处理实现方案,也讲解了一种近实时的实现方案。最后对协同过滤的产品形态及应用场景、优缺点、在落地协同过滤算法中需要注意的问题进行了介绍。希望本章内容可以帮助读者更深入地了解协同过滤推荐算法。章末参考文献展示了学术界、工业界对协同过滤算法原理、实践从不同视角和场景进行的论述,具有非常大的参考价值,值得读者阅读学习。

参考文献

[1]Badrul Sarwar,George Karypis,Joseph Konstan,et al.Item-based collaborative filtering recommendation algorithms[C].[S.l.]:WWW,2001.

[2]Mukund Deshpande,George Karypis.item-based top-n recommendation algorithms[C].[S.l.]:ACM,2004.

[3]Yifan Hu,Yehuda Koren,Chris Volinsky.Collaborative filtering for implicit feedback datasets[C].[S.l.]:IEEE,2008.

[4]Greg Linden,Brent Smith,Jeremy York.Amazon.com reecommendations:Item-to-item collaborative filtering[C].[S.l.]:IEEE,2003.

[5]Yanxiang Huang,Bin Cui,Jie Jiang,et al.TencentRec:Real-time Stream Recommendation in Practice[C].[S.l.]:SIGMOD,2016.

[6]Abhinandan Das,Mayur Datar,Ashutosh Garg,et al.Google news personalization:Scalable online collaborative flitering[C].[S.l.]:WWW,2007.

[7]Pawel Matuszyk,João Vinagre,Myra Spiliopoulou,et al.Forgetting mechanisms for incremental collaborative filtering[C].[S.l.]:ACM,2015.

[8]Xiao Yang,Zhaoxin Zhang,Ke Wang.calable collaborative filtering using incremental update and local link prediction[C].[S.l.]:ACM,2012.

[9]Paul Resnick,Neophytos Iacovou,Mitesh Suchak,et al.GroupLens:An Open Architecture for Collaborative Filtering of Netnews[C].[S.l.]:ACM,1994.

[10]Jonathan L Herlocker,Joseph A Konstan,et al.An algorithmic framework for performing collaborative filtering[C].[S.l.]:SIGIR,1999.

[11]Xiaoyuan Su,Taghi M Khoshgoftaar.A survey of collaborative filtering techniques[C].[S.l.]:ACM,2009.

[12]J Ben Schafer,Dan Frankowski,Jon Herlocker,et al.Collaborative filtering recommender systems[C].[S.l.]:The Adaptive Web,LNCS 4321,pp.291–324,2007.