深入浅出Pandas:利用Python进行数据处理与分析
上QQ阅读APP看书,第一时间看更新

3.3 读取Excel

pandas.read_excel接口用于读取Excel格式的数据文件,由于它使用非常频繁、功能强大、参数众多,因此在这里专门做详细介绍。

3.3.1 语法

pandas.read_excel接口的语法如下:

pd.read_excel(io, sheet_name=0, header=0,
              names=None, index_col=None,
              usecols=None, squeeze=False,
              dtype=None, engine=None,
              converters=None, true_values=None,
              false_values=None, skiprows=None,
              nrows=None, na_values=None,
              keep_default_na=True, verbose=False,
              parse_dates=False, date_parser=None,
              thousands=None, comment=None, skipfooter=0,
              convert_float=True, mangle_dupe_cols=True, **kwds)

3.3.2 文件内容

io为第一个参数,没有默认值,也不能为空,根据Python的语法,第一个参数传参时可以不写。可以传入本地文件名或者远程文件的URL:

# 字符串、字节、Excel文件、xlrd.Book实例、路径对象或者类似文件的对象
# 本地相对路径
pd.read_excel('data/data.xlsx') # 注意目录层级
pd.read_excel('data.xls') # 如果文件与代码文件在同一目录下
# 本地绝对路径
pd.read_excel('/user/gairuo/data/data.xlsx')
# 使用URL
pd.read_excel('https://www.gairuo.com/file/data/dataset/team.xlsx')

与read_csv一样,需要注意,Mac和Windows中的路径写法不一样。

3.3.3 表格

sheet_name可以指定Excel文件读取哪个sheet,如果不指定,默认读取第一个。

# 字符串、整型、列表、None,默认为0
pd.read_excel('tmp.xlsx', sheet_name=1) # 第二个sheet
pd.read_excel('tmp.xlsx', sheet_name='总结表') # 按sheet的名字

# 读取第一个、第二个、名为Sheet5的sheet,返回一个df组成的字典
dfs = pd.read_excel('tmp.xlsx', sheet_name=[0, 1, "Sheet5"])
dfs = pd.read_excel('tmp.xlsx', sheet_name=None) # 所有sheet
dfs['Sheet5'] # 读取时按sheet名

3.3.4 表头

数据的表头参数为header,如不指定,默认为第一行。

# 整型、整型组成的列表,默认为 0
pd.read_excel('tmp.xlsx', header=None)  # 不设表头
pd.read_excel('tmp.xlsx', header=2)  # 第三行为表头
pd.read_excel('tmp.xlsx', header=[0, 1])  # 两层表头,多层索引

3.3.5 列名

用names指定列名,也就是表头的名称,如不指定,默认为表头的名称。

# 序列,默认为None
pd.read_excel('tmp.xlsx', names=['姓名', '年龄', '成绩'])
pd.read_excel('tmp.xlsx', names=c_list) # 传入列表变量
# 没有表头,需要设置为None
pd.read_excel('tmp.xlsx', header=None, names=None)

3.3.6 其他

其他参数与pandas.read_csv的同名参数功能一致,如果想使用仅pandas.read_csv有的参数,可以考虑将数据保存为CSV文件,因为CSV文件相对通用、读取数据快且处理方法比较丰富。

3.3.7 小结

本节介绍了pandas.read_excel相对于pandas.read_csv专有的参数功能。由于Excel文件在日常工作中较为常用,所以需要熟练掌握Excel的数据读取功能。另外对于一些量比较小的Excel数据文件,在做数据临时处理时,可以复制并使用pd.read_clipboard()来读取,非常方便。