纳米CMOS器件及电路的辐射效应
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Baumann R C. Radiation-induced soft errors in advanced semiconductor technologies.IEEE Trans.Dev.Mater.Reliab.,2005,5(3):305-316

[2] Normand E. Single-event effects in avionics.IEEE Trans.Nucl.Sci.,1996,43(2):461-474

[3] Dodd P E. Physics-based simulation of single-event effects.IEEE Trans.Dev.Mater.Reliab.,2005,5(3):343-357

[4] 刘保军.纳电子器件及电路在单粒子效应下的可靠性研究.西安:空军工程大学,2013

[5] 刘忠永.SiC功率MOSFET单粒子效应研究.西安:空军工程大学,2017

[6] 郝金宝.FinFET SRAM的瞬时剂量率效应研究.西安:西安电子科技大学,2017

[7] 刘小强.纳米高k栅CMOS器件的总剂量效应及加固技术研究.西安:空军工程大学,2019

[8] Oldham T R,Mclean F B. Total ionizing dose effects in MOS oxides and devices.IEEE Trans.Nucl.Sci.,2003,50(3):483-499

[9] Hughes H L,Benedetto J M. Radiation effects and hardening of MOS technology:devices and circuits.IEEE Trans.Nucl.Sci.,2003,50(3):500-521

[10] 陈盘训.半导体器件和集成电路的辐射效应.北京:国防工业出版社,2005

[11] Wang F. Soft error rate determination for nanometer CMOS VLSI circuits.Auburn Alabama:Auburn University,2008

[12] 刘必慰.集成电路单粒子效应建模与加固方法研究.长沙:国防科技大学,2009

[13] Leray J L. Effects of atmospheric neutrons on devices,at sea level and in avionics embedded systems.Microelectron.Reliab.,2007,47:1827-1835

[14] Duzellier S. Radiation effects on electronic devices in space.Aero.Sci.Tech.,2005,9:93-99

[15] 高武.抗辐射集成电路设计理论与方法.北京:清华大学出版社,2018

[16] 徐富兵.基于FinFET SRAM单粒子效应仿真研究.西安:西安电子科技大学,2015

[17] Bazilevskava G A. Solar cosmic rays in the near earth space and the atmosphere.Adv.Space Res.,2005,35:458-464

[18] 总装备部电子信息基础部.军用电子元器件.北京:国防工业出版社,2009

[19] Claeys C,Simoen E.先进半导体材料及器件的辐射效应.刘忠立译.北京:国防工业出版社,2008

[20] Iniewski K. Nanoelectronics:nanowires,molecular electronics and nanodevices.北京:科学出版社,2011

[21] Johnston A H. Scaling and technology issues for soft error rates.The 4th Annual Res.Confer.Reliab.,Stanford University,California,2000:1-9

[22] Petersen E.空间单粒子效应:影响航天电子系统的危险因素.韩郑生,沈自才,丁义刚等译.北京:电子工业出版社,2016

[23] 蔡明辉,韩建伟,李小银等.邻近空间大气中子环境的仿真研究.物理学报,2009,58(9):6659-6664

[24] Ibe E H.现代集成电路和电子系统的地球环境辐射效应.毕津顺,马瑶,王天琦译.北京:电子工业出版社,2019

[25] Wallmark J,Mareus S. Minimum size and maximum packing density of nonredundant semiconductor device.Proc.IEEE,1962,50:286-298

[26] Binder D,Smithand E,Holman A. Satellite anomalies from galactic cosmic ray.IEEE Trans.Nucl.Sci.,1975,22(6):2675-2680

[27] Kobetich E J,Katz R. Energy deposition by electron beams andδrays.Phys.Rev.,1968,170(2):391-396

[28] Stapor W J,McDonald P T. Practical approach to ion track energy distribution.J.Appl.Phys.,1988,64(9):4430-4434

[29] Stapor W J,McDonald P T,Knudson A R,et al. Charge collection in silicon for ions of different energy but same linear energy transfer (LET).IEEE Trans.Nucl.Sci.,1988,35(6):1585-1590

[30] Heinbockel J H,Slaba T C,Tripathi R K,et al. Comparison of the transport codes HZETRN,HETC and FLUKA for galactic cosmic rays.Adv.Space Res.,2011,47:1089-1105

[31] Liamsuwan T,Uehara S,Emfietzoglou D,et al. A model of carbon ion interactions in water using the classical trajectory Monte Carlo method.Radiat.Prot.Dos.,2011,143(2-4):152-155

[32] Liu B J,Cai L,Bai P,et al. Radial dose distributions for ions in arbitrary matter.Radiat.Prot.Dos.,2012,150(2):239-244

[33] Sortica M A,Grande P L,Machado G,et al. Characterization of nanoparticles through medium-energy ion scattering.J.Appl.Phys.,2009,106:114320

[34] Ziegler J F.Program SRIM/TRIM.http://www.srim.org,2008

[35] Badavi F F,Wilson J W,Hunter A. Numerical study of the generation of linear energy transfer spectra for space radiation applications.Adv.Space Res.,2011,47(9):1608-1615

[36] Kushin V V. Measurement of LET distribution and absorbed dose from secondary particles on board the spacecraft.Radiat.Prot.Dos.,2010,141(2):199-204

[37] 王同权,沈永平,张若棋等.空间辐射效应的蒙特卡罗模拟.强激光与粒子束,2000,12(3):339-332

[38] Barak J,Akkerman A. Straggling and extreme cases in the energy deposition by ions in submicron silicon volumes.IEEE Trans.Nucl.Sci.,2005,52(6):2175-2181

[39] Liu B J,Cai L,Yang X K,et al. A semi-empirical model of linear energy transfer for heavy ions and electron.Nucl.Eng.&Design,245 (2012):202-205

[40] Javanainen A,Trzaska W H,Harboe-SRensen R,et al. Semi-empirical LET descriptions of heavy ions used in the European Component Irradiation Facilities.European Conf.Radiat.ITS Effects Comp.Syst..IEEE,2009:298-300

[41] European Component Irradiation Facities Cocktail Calculator.http://research.jyu.fi/radef/ECIFcalc/dedx.html

[42] Kobayashi A S,Sternberg A L,Massengill L W,et al. Spatial and temporal characteristics of energy deposition by protons and alpha particles in silicon.IEEE Trans.Nucl.Sci.,2004,51(6):3312-3317

[43] Schrimpf R D,Fleetwood D M,Alles M L,et al. Radiation effects in new materials for nano-devices.Microelectron.Engineer.,2011,88(7):1259-1264

[44] Murat M,Akkerman A,Barak J. Spatial distribution of electron-hole pairs induced by electronsand protons in SiO2.IEEE Trans.Nucl.Sci.,2004,51(6):3211-3218

[45] Sayil S,Akkur A,GaspardIII N. Single event crosstalk shielding for CMOS logic.Microelectron.J.,2009,40:1000-1006

[46] Melean F B,Oldham T R. Charge funneling in n-and p-type Si substrates.IEEE Trans.Nucl.Sci.,1982,29(6):2015-2023

[47] McPartland R J. Circuit simulations of alpha-particle-induced soft errors in MOS dynamic RAM's.IEEE J.Solid-State Circ.,1981,SC-16(1):31-34

[48] Petersen E L,Shapiro P,Adams J H,et al. Calculation of cosmic-ray induced soft upsets and scaling in VLSI devices.IEEE Trans.Nucl.Sci.,1982,NS-29(6):2055-2063

[49] Rao R R,Chopra K,Blaauw D T,et al. Computing the soft error rate of a combinational logic circuit using parameterized descriptors.IEEE Trans.Comput.-Aided Des.Integ.Circ.Syst.,2007,26(3):468-479

[50] Asadi H,Tahoori M B. Soft error modeling and remediation techniques in ASIC designs.Microelectron.J.,2010,41:506-522

[51] Adams J H,Silberberg J B,Tsao C H. Cosmic ray effects on microelectronics.IEEE Trans.Nucl.Sci.,1982,NS-29(1):169-172

[52] Wrobel F,Saigné F. MC-ORACLE:a tool for predicting soft error rate.Compu.Phys.Communicat.,2011,182:317-321

[53] Firouzi F,Salehi M E,Wang F,et al. An accurate model for soft error rate estimation considering dynamic voltage and frequency scaling effects.Microelectron.Reliab.,2011,51:460-467

[54] Tanay K,Peter H,Jagdish P. Characterization of soft errors caused by single event upsets in CMOS process.IEEE Trans.Dependab.Sec.Computing,2004,1(2):128-143

[55] Howe C L. Radiation-induced energy deposition and single event upset error rates in scaled microelectronic structures.Tennessee:Vanderbilt University,2005

[56] Taber A,Normand E. Single event upset in avionics.IEEE Trans.Nucl.Sci.,1993,40(2):120-126

[57] Normand E. Extensions of the burst generation rate method for wider application to proton/neutron-induced single event effects.IEEE Trans.Nucl.Sci.,1998,45(6):2904-2914

[58] 郭晓强,郭红霞,王桂珍等.SRAM 单元中子单粒子翻转效应的 Geant4 模拟.原子能科学技术,2010,44(3):362-367

[59] Petersen E L,Langworthy J B,Diehl S E. Suggested single event upset figure of merit.IEEE Trans.Nucl.Sci.,1983,NS-30(6):4533-4539

[60] Naseer R,Boulghassoul Y,Draper J,et al. Critical charge characterization for soft error rate modeling in 90nm SRAM.Proc.IEEE Int.Symp.Circ.Syst.,2007:1879-1882

[61] Jahinuzzaman S M,Sharifkhani M,Sachdev M. An analytical model for soft error critical chargeof nanometric SRAMs.IEEE Trans.VLSI Syst.,2009,17(9):1187-1195

[62] 罗尹虹,张正选,吴国荣等.NMOSFET电离辐射效应的二维数值模拟.固体电子学研究与进展,2001,21(3):339-344

[63] 郭红霞.集成电路电离辐射效应数值模拟及 X 射线剂量增强效应研究.西安:西安电子科技大学,2002

[64] Dodd P E,Massengill L W. Basic mechanisms and modeling of single-event upset in digital microelectronics.IEEE Trans.Nucl.Sci.,2003,50(3):583-602

[65] 张晋新,郭红霞,郭旗等.重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟.物理学报,2013,62(4):048501

[66] 陈伟华,杜磊,庄奕琪等.MOS结构电离辐射效应模型研究.物理学报,2009,58(6):4090-4095

[67] Alvarado J,Boufouss E,Kilchytska V,et al. Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs.Microelectron.Reliab.,2010,50:1852-1856

[68] 刘征,陈书明,梁斌.单粒子瞬态中的双极放大效应研究.物理学报,2010,59(1):649-654

[69] Gouker P M,Gadlage M J,McMorrow D,et al. Effects of ionizing radiation on digital single event transients in a 180-nm fully depleted SOI process.IEEE Trans.Nucl.Sci.,2009,56(6):3477-3482

[70] Wirth G,Kastensmidt F L,Ribeiro I. Single event transients in logic circuits-load and propagation induced pulse broadening.IEEE Trans.Nucl.Sci.,2008,55(6):2928-2935

[71] Kruckmeyer K,Prater J S,Brown B,et al. Single event transient response dependence on operating conditions for a digital to analog converter.IEEE Trans.Nucl.Sci.,2009,56(6):3567-3572

[72] Chen J J,Chen S M,Liang B,et al. Negative bias temperature instability induced single event transient pulse narrowing and broadening.J.Semiconduct.,2010,31(12):124004

[73] Liu B J,Cai L,Yang X,et al. The impact of Miller and coupling effects on single event transient in logical circuits.Microelectron.J.,2012,43(1):63-68

[74] Liu B J,Cai L,Zhu J. Accurate analytical model for single event (SE) crosstalk.IEEE Trans.Nucl.Sci.,2012,59(4):1621-1627

[75] Wirth G I,Vieira M G,Neto E H,et al. Modeling the sensitivity of CMOS circuits to radiation induced single event transients.Microelectron.Reliab.,2008,48:29-36

[76] Narasimham B,Bhuva B L,Holman W T,et al. The effect of negative feedback on single event transient propagation in digital circuits.IEEE Trans.Nucl.Sci.,2006,53(6):3285-3290

[77] Narasimham B,Gadlage M J,Bhuva B L,et al. Characterization of neutron-and alpha-particle-induced transients leading to soft errors in 90-nm CMOS technology.IEEE Trans.Dev.Mater.Reliab.,2009,9(2):325-333

[78] Qin J R,Chen S M,Li D W,et al. Temperature and drain bias dependence of single event transient in 25-nm FinFET technology.Chinese Phys.B,2012,21(8):089401

[79] Hirao T,Nashiyama I,Kamiya T,et al. Effect of ion position on single event transient current.Nucl.Instrum.Meth.Phys.Res.B,1997,130:486-490

[80] Reed R A,Weller R A,Mendenhall M H,et al. Impact of ion energy and species on single event effects analysis.IEEE Trans.Nucl.Sci.,2007,54(6):2312-2321

[81] Hutson J M,Pellish J D,Boselli G,et al. The effects of angle of incidence and temperature on latchup in 65nm technology.IEEE Trans.Nucl.Sci.,2007,54(6):2541-2546

[82] Benedetto J M,Eaton P H,Mavis D G,et al. Digital single event transient trends with technology node scaling.IEEE Trans.Nucl.Sci.,2006,53(6):3462-3465

[83] Waskiewicz A E,Groninger J W,Strahan V H,et al. Burnout of power MOS transistors with heavy ions of californium-252.IEEE Trans.Nucl.Sci.,1986,33(6):1710-1713

[84] Fischer T A. Heavy-ion-induced,gate-rupture in power MOSFETs.IEEE Trans.Nucl.Sci.,2007,34(6):1786-1791

[85] Adolphsen J W,Barth J L,Gee G B. First observation of proton induced power MOSFET burnout in space:the CRUX experiment on APEX.IEEE Trans.Nucl.Sci.,1996,43(6):2921-2926

[86] Hohl J H,Johnnson G H. Features of the triggering mechanism for single event burnout of power MOSFETs.IEEE Trans.Nucl.Sci.,1989,36(6):2260-2266

[87] Titus J L. An updated perspective of single event gate rupture and single event burnout in power MOSFETs.IEEE Trans.Nucl.Sci.,2013,60(3):1912-1928

[88] Allenspach M,Brews J R,Galloway K F,et al. SEGR:A unique failure mode for power MOSFETs in spacecraft.Microelectron.Reliab.,1996,36(11-12):1871-1874

[89] Darwish M N,Shibib M A,Pinto M R,et al. Single event gate rupture of power DMOS transistors.Electron Dev.Meeting.iedm.technic.Digest.Int,1993:671-674

[90] Roubaud F,Dachs C,Palau J M,et al. Experimental and 2D simulation study of the single event burnout in N-channel power MOSFETs.IEEE Trans.Nucl.Sci.,1993,40(6):1952-1958

[91] Luu A,Austin P,Miller F,et al. Sensitive volume and triggering criteria of SEB in classic planar VDMOS.IEEE Trans.Nucl.Sci.,2010,57(4):1900-1907

[92] Liu S,Lauenstein J M,Ferlet-Cavrois V,et al. Effects of ion species on SEB failure voltage of power DMOSFET.IEEE Trans.Nucl.Sci.,2011,58(6):2991-2997

[93] Titus J L,Wheatley C F. Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs.IEEE Trans.Nucl.Sci.,2002,43(2):533-545

[94] Johnson G H,Schrimpf R D,Galloway K F,et al. Temperature dependence of single-event burnout in n-channel power MOSFETs.IEEE Trans.Nucl.Sci.,1992,39(6):1605-1612

[95] Liu S,Marec R,Sherman P,et al. Evaluation on protective single event burnout test method for power DMOSFETs.IEEE Trans.Nucl.Sci.,2012,59(4):1125-1129

[96] 郭红霞,陈雨生,张义门等.n沟VDMOSFET单粒子烧毁的二维数值模拟.核电子学与探测技术,2004,24(6):608-611

[97] 杨世宇,曹洲,薛玉雄.功率MOSFET器件单粒子烧毁252Cf源模拟试验研究.原子能科学技术,2007,41(3):361-365

[98] 唐本奇,王燕萍.功率 MOS 器件单粒子烧毁效应的 Pspice 模拟.核电子学与探测技术,1999,19(6):422-427

[99] Wrobel T F,Beutler D E. Solutions to heavy ion induced avalanche burnout in power devices. IEEE Trans.Nucl.Sci.,1992,39(6):1636-1641

[100] Liu S,Boden M,Girdhar D A,et al. Single-event burnout and avalanche characteristics of power DMOSFETs.IEEE Trans.Nucl.Sci.,2006,53(6):3379-3385

[101] Liu S,Titus J L,Boden M. Effect of buffer layer on single-event burnout of power DMOSFETs.IEEE Trans.Nucl.Sci.,2007,54(6):2554-2560

[102] Wang Y,Zhang Y,Wang L G,et al. Single-event burnout hardening of power UMOSFETs with optimized structure.IEEE Trans.Electron Dev.,2013,60(6):2001-2007

[103] Wang Y,Zhang Y,Cao F,et al. Single-event burnout hardened structure of power UMOSFETs with Schottky source.IEEE Trans.Power Electr.,2014,29(7):3733-3737

[104] Wan X,Zhou W S,Ren S,et al. SEB hardened power MOSFETs with high-k dielectrics.IEEE Trans.Nucl.Sci.,2015,62(6):2830-2836

[105]高一星,胡冬青,贾云鹏等.功率MOSFET抗SEB能力的二维数值模拟.电力电子技术,2012,46(1):114-116

[106]胡冬青,吴郁,贾云鹏.仿真研究变掺杂缓冲层技术对MOSFET抗SEB能力的改善.电力电子,2011(3):44-46

[107] Jia Y,Peng L,Su H,et al. Effect of grade doping buffer layer on SEE failure in VDMOSFET. Physical and Failure Analysis of Integrated Circuits.IEEE,2016

[108] Zhang X. Failure mechanisms investigation for silicon carbide Power Devices.Maryland:University of Maryland,2006

[109] Shoji T,Nishida S,Hamada K,et al. Observation and analysis of neutron-induced single event burnout in silicon power diodes.IEEE Trans.Power Electr.,2015,30(5):2474-2480

[110] Abbate C,Busatto G,Cova P,et al. Analysis of heavy ion irradiation induced thermal damage in SiC Schottky diodes.IEEE Trans.Nucl.Sci.,2015,62(1):202-209

[111] Felgemacher C,Araujo S V,Noeding C,et al. Benefits of increased cosmic radiation robustness of SiC semiconductors in large power-converters.PCIM Europe,2016:573-580

[112] Titus J L,Wheatley C F,Van Tyne K M,et al. Effect of ion energy upon dielectric breakdown of the capacitor response in vertical power MOSFETs.IEEE Trans.Nucl.Sci.,1998,45(6):2492-2499

[113] Lauenstein J M,Goldsman N,Liu S,et al. Effects of ion atomic number on single-event gate rupture (SEGR) susceptibility of power MOSFETs.IEEE Trans.Nucl.Sci.,2011,58(6):2628-2636

[114] Titus J L,Wheatley C F,Burton D I,et al. Impact of oxide thickness on SEGR failure in vertical power MOSFETs development of a semi-empirical expression.IEEE Trans.Nucl.Sci.,2002,42(6):1928-1934

[115] Silvestri M,Gerardin S,Paccagnella A,et al. Gate rupture in ultra-thin gate oxides irradiated with heavy ions.IEEE Trans.Nucl.Sci.,2008,56(4):1964-1970

[116] Lawrence R K,Zimmerman J A,Ross J F. Physical evidence supporting the electrical signature of SEGR on thin vertical oxides.IEEE Trans.Nucl.Sci.,2010,57(4):1849-1855

[117] Allenspach M,Mouret I,Titus J L,et al. Single-event gate-rupture in power MOSFETs:prediction of breakdown biases and evaluation of oxide thickness dependence.IEEE Trans.Nucl.Sci.,1995,42(6):1922-1927

[118] Savage M W,Burton D I,Wheatley C F,et al. An improved stripe-cell SEGR hardened power MOSFET technology.IEEE Trans.Nucl.Sci.,2001,48(6):1872-1878

[119] Titus J L,Wheatley C F,Allenspach M,et al. Influence of ion beam energy on SEGR failure thresholds of vertical power MOSFETs.IEEE Trans.Nucl.Sci.,1996,43(6):2938-2943

[120] Javanainen A,Ferlet-Cavrois V,Bosser A,et al. SEGR in SiO2-Si3N4 stacks.European Conf.Rad.ITS Effects on Comp.Syst..IEEE,2014:1902-1908

[121]王小荷,黄玉文,耿增建.VDMOS 器件单粒子加固技术研究.全国抗辐射电子学与电磁脉冲学术年会,2009:217-222

[122] Lades M,Wachutka G. Extended anisotropic mobility model applied to 4H/6H-SiC devices.Int Conf.Simul.Semicond.Proc.Dev..IEEE,1997:169-171

[123] Hatakeyama T,Nishio J,Ota C,et al. Physical modeling and scaling properties of 4H-SiC power devices.Int Conf.Simul.Semicond.Proc.Dev..IEEE,2005:171-174

[124] Hatakeyama T,Fukuda K,Okumura H. Physical models for SiC and their application to device simulations of SiC insulated-gate bipolar transistors.IEEE Trans.Electron Dev.,2013,60(2):613-621

[125]刘莉,杨银堂,柴常春.各向异性6H-SiC MOSFET击穿的温度特性.固体电子学研究与进展,2005,25(1):47-51

[126]陆秋俊,王中健.4H-SiC基超结器件各向异性的TCAD建模分析.电子器件,2016,39(3):505-511

[127] Yu C H,Wang Y,Fei X X,et al. Simulation study of single-event burnout in power trench ACCUFETs.IEEE Trans.Nucl.Sci.,2016,63(5):2709-2715

[128] Huang S,Amaratunga G A J,Udrea F. Analysis of SEB and SEGR in super-junction MOSFETs. IEEE Trans.Nucl.Sci.,2000,47(6):2640-2647

[129] Ikeda N,Kuboyama S,Matsuda S. Single-event burnout of Super-junction power MOSFETs. IEEE Trans.Nucl.Sci.,2004,51(6):3332-3335

[130] Zerarka M,Austin P,Morancho F,et al. Analysis study of sensitive volume and triggering criteriaof single-event burnout in super-junction metal-oxide semiconductor field-effect transistors.IET Circ.Dev.&Sys.,2014,8(3):197-204

[131] Katoh S,Shimada E,Yoshihira T,et al. Temperature dependence of single-event burnout for super junction MOSFET.IEEE,Int Symp.Power Semicond.Dev.&ICs.IEEE,2015:93-96.

[132] Kayali S. Reliability of compound semiconductor devices for space applications.Microelectron.Reliab.,1999,39:1723-1736

[133] Choudhury M R,Mohanram K. Reliability analysis of logic circuits.IEEE Trans.Comput.-Aided Des.Integ.Circ.Syst.,2009,28(3):392-405

[134] Levitin G,Xing L. Reliability and performance of multi-state systems with propagated failures having selective effect.Reliab.Eng.Syst.Safety,2010,95:655-661

[135] Castet J F,Saleh J H. Beyond reliability,multi-state failure analysis of satellite subsystems:a statistical approach.Reliab.Eng.Syst.Safety,2010,95:311-322

[136] Natasa M Z,Diana M. Circuit reliability analysis using symbolic techniques.IEEE Trans.Comput.-Aided Des.Integ.Circ.Syst.,2006,25(12):2638-2649

[137] Felix J A,Schwank J R,Fleetwood D M,et al. Effects of radiation and charge trapping on the reliability of high-k dielectrics.Microelectron.Reliab.,2004,44:563-575

[138] Jones J,Hayes J. Estimation of system reliability using a non-constant failure rate model.IEEE Trans.Reliab.,2001,50(3):286-288

[139] Franco D T,Vasconcelos M C,Naviner L,et al. Signal probability for reliability evaluation of logic circuits.Microelectron.Reliab.,2008,48:1586-1591

[140] Liu B J,Cai L,Bai P,et al. Reliability evaluation for single event crosstalk via probabilistic transfer matrix.M icroelectron.Reliab.,2012,52:1511-1514

[141] Liu B J,Cai L. Reliability evaluation for single event transients on digital circuits.IEEE Trans.Reliab.,2012,61(3):687-691

[142] Kerns S E,Shafer B D. The design of radiation-hardened ICs for space:a compendium of approaches.Proc.IEEE,1988,76(11):1470-1509

[143]韩郑生.抗辐射集成电路概论.北京:清华大学出版社,2011

[144] Brisset C,Dollfus P,Musseau O,et al. Theoretical study of SEUs in 0.25-μm fully-depleted CMOS/SOI technology.IEEE Trans.Nucl.Sci.,1994,41(6):2297-2303

[145] Semiconductor Industry Association. International Technology Roadmap for Semiconductors (ITRS) 2011 edition.http://public.itrs.net,2011

[146] Gabrielli A,Loddo F,Ranieri A,et al. Design and submission of rad-tolerant circuits for future front-end electronics at S-LHC.Nucl.Instrum.Meth.Phys.Res.A,2010,612:455-459

[147] Samudrala P K,Ramos J,Katkoori S. Selevtive triple modular redundancy (STMR) based single-event upset tolerant synthesis for FPGAs.IEEE Trans.Nucl.Sci.,2004,51(5):2957-2969

[148] Baze M P,Buchner S P,McMorrow D. A digital CMOS design technique for SEU hardening.IEEE Trans.Nucl.Sci.,2000,47(6):2603-2608

[149] Srinivasan V,Sternberg A L,Duncan A R,et al. Single-event mitigation in combinational logic using targeted data path hardening.IEEE Trans.Nucl.Sci.,2005,52(6):2516-2523

[150] Kim H,Lee H,Lee K. The design and analysis of AVTMR (all voting triple modular redundancy) and dual-duplex system.Reliab.Eng.Syst.Safety,2005,88:291-300

[151] Maheshwari A,Burleson W,Tessier R. Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuits.IEEE Trans.VLSI Syst.,2004,12(3):299-311

[152] Choudhury M R,Zhou Q,Mohanram K. Design optimization for single event upset robustness using simultaneous dual-VDD and sizing techniques.ICCAD.San Jose,California,USA,2006:204-209

[153] Zhou Q,Mohanram K. Gate sizing to radiation harden combinational logic.IEEE Trans.Comput.-Aided Des.Integ.Circ.Syst.,2006,25(1):155-166

[154] Almukhaizim S,Makris Y. Soft error mitigation through selective addition of functionally redundant wires.IEEE Trans.Reliab.,2008,57(1):23-31

[155] Chen J,Chen S,Liang B,et al. Radiation hardened by design techniques to reduce single event transient pulse width based on the physical mechanism.Microelectron.Reliab.,2012,52:1227-1232

[156] Smith F. Single event upset mitigation by means of a sequential circuit state freeze.Microelectron.Reliab.,2012,52:1233-1240

[157] Kontoleon J. Soft error recovery in simplex and triplex memory systems.Microelectron.Reilab.,2009,49:410-423

[158] Zhao Z,Zhang M,Chen S,et al. A radiation-harden-by-design technique for improving single-event transient tolerance of charge pumps in PLLs.J.Semiconduct.,2009,30(12):125009

[159] Bastos R P,Kastensmidt F L,Reis R. Design of a soft-error robust microprocessor. Microelectron.J.,2009,40:1062-1068

[160] Blaine R W,Atkinson N M,Kauppila J S,et al. Single-event-hardened CMOS operational amplifier design.IEEE Trans.Nucl.Sci.,2012,59(4):803-810

[161]孙岩,高昌垒,李少青等.低开销的软错误免疫寄存器设计.国防科技大学学报,2009,31(5):12-18

[162]赵振宇,郭斌,张民选等.一款0.18μm CMOS 辐射加固差分压控振荡器.国防科技大学学报,2009,31(6):12-17

[163]张英武,袁国顺.一种抗单粒子全加固 D 触发器的设计.固体电子学研究与进展,2009,29(3):403-406

[164]陈吉华,秦军瑞,赵振宇等.一种新型 SEU/SET 加固鉴频鉴相器设计.国防科技大学学报,2009,31(6):1-5

[165]胡明浩,李磊,饶全林.基于RHBD技术CMOS锁存器加固电路的研究.微电子学与计算机,2010,27(7):206-209

[166] Sterpone L,Violante M. Hardening FPGA-based systems against SEUs:a new design methodology.J.Comput.,2006,1(1):22-30

[167]张丹.65nm工艺下MOSFET的总剂量辐照效应及加固研究.西安电子科技大学,2015

[168] Neamen D,Shedd W,Buchanan B. Effects of ionizing radiation on dielectrically isolated junction field effect transistors.IEEE Trans.Nucl.Sci.,1972,19(6):400-405

[169] Borrego J M,Gutmann R J,Narain J. Transient ionizing radiation effects on BARITT diode oscillators.IEEE Trans.Nucl.Sci.,1975,22(6):2488-2493

[170] Neamen D,Shedd W,Buchanan B. Permanent ionizing radiation effects in dielectrically bounded field effect transistors.IEEE Trans.Nucl.Sci.,2007,20(6):158-165

[171] Burghard,G. Radiation failure modes in CMOS integrated circuits.IEEE Trans.Nucl.Sci.,1973,20(6):300-306

[172] Nielsen R L,Nichols D K. Total Dose Effects of ionizing radiation on MOS structures at 90°K. IEEE Trans.Nucl.Sci.,2007,20(6):319-325

[173] Killiany J M,Baker W D,Saks N S,et al. Effects of ionizing radiation on charge-coupled device structures.IEEE Trans.Nucl.Sci.,1974,21(6):193-200

[174] T P Ma,Paul V.Dressendorfer. Ionizing radiation effects in MOS devices and circuits.John Wiley&Sons,1989:180-220

[175] John H,Paul V V,John M. Scaling limitations of submicron local oxidation technology. Electron Dev.Meeting 1985.Palo Alto:IEEE,1985

[176] Shaneyfelt M R,Dodd P E,Draper B L,et al. Challenges in hardening technologies using shallow-trench isolation.IEEE Trans.Nucl.Sci.,1998,45(6):2584-2592

[177] Barnaby H J,Mclain M,Esqueda I S. Total-ionizing-dose effects on isolation oxides in modern CMOS technologies.Nucl.Instrum.Meth.Phys.Res.,2007,261(2):1142-1145

[178] Barnaby H J. Total-ionizing-dose effects in modern CMOS tchnologies.IEEE Trans.Nucl.Sci.,2006,53(6):3103-3121

[179] Colinge J P. Silicon-on-Insulator Technology:Materials to VLSI.1997

[180] Gaillardin M,Raine M,Paillet P,et al. Radiation effects in advanced SOI devices:New insights into Total Ionizing Dose and Single-Event Effects.SOI-3D-Subthreshold Microelectronics Technology Unified Conference,2013.Monterey,CA:IEEE,2013

[181]肖志强.SOI器件电离总剂量辐射特性研究.电子科技大学,2011

[182] Gorbunov M S,Vasilegin B V,Antonov A A,et al. Analysis of SOI CMOS microprocessor's SEE sensitivity:correlation of the results obtained by different test methods.IEEE Trans.Nucl.Sci.,2012,59(4):1130-1135

[183] Huang R,An X,Wu W,et al. Total ionizing dose (TID) effect and single event effect (SEE) inquasi-SOI nMOSFETs.Semicond.Sci.&Tech.,2014,29(1):15010-15016

[184] Tu R,Sinitsky D,Assaderaghi F,et al. Simulation of floating body effect in SOI circuits using BSIM3SOI.Int Symp.VLSI Tech.,2002

[185] Yoshimi M,Terauchi M,Nishiyama A,et al. Suppression of the floating-body effect in SOI MOSFET's by the bandgap engineering method using a Si1-xGex source structure.IEEE Trans.Electron Dev.,1997,44(3):423-430

[186] Murakami T,Ando M,Sadachika N,et al. Modeling of floating-body effect in silicon-on-insulator metal-oxide-silicon field-effect transistor with complete surface-potential-based description.Japan.J.Appl.Phy.,2008,47(47):2556-2559

[187] Jungemann C,Neinhüs B,Nguyen C D,et al. Impact of the Floating Body Effect on Noise in SOI Devices Investigated by Hydrodynamic Simulation.Simulation of Semicond.Proc.Dev.2004

[188]刘洁,周继承,罗宏伟等.电离辐射中SOI MOSFETs的背栅异常kink效应研究.半导体学报,2008,29(1):149-152

[189] Mercha A,Rafi J M,Simoen E,et al. "Linear kink effect" induced by electron valence band tunneling in ultrathin gate oxide bulk and SOI MOSFETS.IEEE Trans.Electron Dev.,2003,50(7):1675-1682

[190] Yan R H,Ourmazd A,Lee K F. Scaling the Si MOSFET:from bulk to SOI to bulk.IEEE Trans.Electron Dev.,1992,39(7):1704-1710

[191] Jenkins W C,Liu S T. Radiation response of fully-depleted MOS transistors fabricated in SIMOX.IEEE Trans.Nucl.Sci.,1994,41(6):2317-2321

[192] Adell P C,Barnaby H J,Schrimpf R D,et al. Band-to-band tunneling (BBT) induced leakage current enhancement in irradiated fully depleted SOI devices.IEEE Trans.Nucl.Sci.,2007,54(6):2174-2180

[193] Mamouni F.E.,Dixit S.K.,Schrimpf R.D.,et al. Gate-length and drain-bias dependence of band-to-band tunneling-induced drain leakage in irradiated fully depleted SOI devices.IEEE Trans.Nucl.Sci.,2008,55(6):3259-3264

[194] Paillet P,Gaillardin M,Ferletcavrois V,et al. Total ionizing dose effects on deca-nanometer fully depleted SOI devices.IEEE Trans.Nucl.Sci.,2006,52(6):2345-2352

[195] Rezzak N,Zhang E X,Alles M L,et al. Total-ionizing-dose radiation response of partially-depleted SOI devices.IEEE Int Soi Conf.,2010

[196] Gaillardin M,Martinez M,Paillet P,et al. Total ionizing dose effects mitigation strategy for nanoscaled FDSOI technologies.IEEE Trans.Nucl.Sci.,2014,61(6):3023-3029