让人信服的回归方程
这些服务不仅可以告诉你价格的涨跌趋势,而且可以告诉你他们对于估计值的信任程度。所以,消费者不仅可以通过Farecast知道票价将会下降,而且可以知道这种预测的正确率是80%。Farecast知道,它有时拥有充分的数据,但在另一些时候没有足够多的数据,无法做出非常准确的预测。所以,它不仅可以显示最佳猜测,而且可以显示这种猜测的可信度。Farecast不仅可以告诉你可信度,而且可以为其进行资金担保。它可以向你提供10美元的“票价守护”保险,用于保证它所提供的机票价格在一周内有效。如果无效,Farecast会补上差价。
这种为预测提供置信水平的能力是回归方法最突出的特征之一。统计回归不仅可以生成预测,而且可以指出预测的准确度。没错——回归可以告诉你预测有多准确。有时,历史数据不够充分,无法做出非常准确的预测,回归方法的结果会告诉你这一点。实际上,回归可以做得更好,它不仅可以告诉你回归方程的整体精确度,而且可以告诉你回归方程中每一项的影响估计值精确度。
所以,沃尔玛可以通过就业测试回归知道三件不同的事情。首先,它知道某个应聘者留在工作岗位上的时间长度。其次,它知道这种预测的精确度。应聘者的预计工作时间可能是30个月,但回归也会显示出应聘者工作不到15个月的概率。如果30个月的预测相对准确,应聘者只工作15个月的概率就会很小,但是如果预测不准确,这个概率可能会变大。许多人想知道是否可以真正信任回归预测。如果预测不准确(可能是因为数据不佳或不完整),回归首先就会告诉你不要依赖这种预测。你上次听到传统专家提到预测准确度是在什么时候?
最后,回归输出可以告诉沃尔玛,它对回归方程每个部分影响的衡量准确度如何。沃尔玛不会公布回归公式的结果。不过,回归输出可能会告诉沃尔玛,认为“每家公司都能容忍特立独行者”的应聘者比不这样想的人工作时间短2.8个月。在应聘者其他特征保持不变的情况下,与这个具体问题相关的预测是工作时间减少2.8个月。回归输出甚至可以走得更远,得出“特立独行”应聘者工作时间更长的概率。根据2.8个月预测的准确性,这个概率即反向影响可能是2%或40%。回归会开启对于自身的验证程序。它会告诉你降水增长对于葡萄酒的影响,以及这种影响是否真的有效。