人工智能:语言智能处理
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1]Ziemski M,Junczys-Dowmunt M,Pouliquen B.The United Nations Parallel Corpus v1.0 [C]//Proceedings of LREC.2016.

[2]Koehn P,Hoang H,Birch A,et al.Moses:Open source toolkit for statistical machine translation[C]//Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions.Association for Computational Linguistics,2007:177-180.

[3]Che W,Li Z,Liu T.LTP:A Chinese language technology platform[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Demonstrations.Association for Computational Linguistics,2010:13-16.

[4]Weaver W.Translation,Milestones in Machine Translation[M]//Locke W N,Booth A D.(eds).Machine Translation of Languages:fourteen essays.Cambridge,Massachusetts:MIT Press,1955:15-23.

[5]Harris Z.Distributional structure[J].Word,1954,10(23):146-162.

[6]Firth J R.A synopsis of linguistic theory 1930-1955[J].Studies in Linguistic Analysis(Oxford:Philological Society):1-32.

[7]Lai S W,Liu K,Xu L H,et al.How to generate a good word embedding? [J].IEEE Intelligent Systems,2016,31(6):5-14.

[8]Lin D K,Pantel P.DIRT,discovery of inference rules from text[C]//Proceedings of Knowledge Discovery and Data Mining,2001:323-328.

[9]Turney P D.The latent relation mapping engine:algorithm and experiments[J].Journal of Artificial Intelligence Research,2008,33:615-655.

[10]Turney P D,Pantel P.From frequency to meaning:wector space models of semantics[J].Journal of Artificial Intelligence Research,2010,37:141-188.

[11]Salton G,Wong A,Yang C S.A vector space model for automatic indexing[J].Communications of the ACM,1975,18(11):613-620.

[12]Deerwester S,Dumais S,Landauer T,et al.Harshman.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science,1990 41(6):391-407.

[13]Sparck-Jones K.A statistical interpretation of term specificity and its application in retrieval[J].Journal of Documentation,1972,28(1):11-21.

[14]Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.

[15]Murphy B,Talukdar P,Mitchell T.Learning effective and interpretable semantic models using non-negative sparse embedding[C]//Proceedings of International Conference on Computational Linguistics,2012:1933-1950.

[16]Lee DD,Seung S.Learning the parts of objects by nonnegative matrix factorization[J].Nature,1999,401:788-791.

[17]Brown P,Vincent J,Pietra D,et al.Class-based n-gram models of natural language[J].Computational Linguistics,1992,18(4):467-479.

[18]Pennington J,Socher R,Manning C.Glove:global vectors for word representation[C].//Proceedings of Empirical Methods in Natural Language Processing,2014:1532-1543.

[19]Lin D,Pantel P.DIRT,discovery of inference rules from text[C]//Proceedings of Knowledge Discovery and Data Mining,2001:323-328.

[20]Turney PD.The latent relation mapping engine:algorithm and experiments[J].Journal of Artificial Intelligence Research,2008,33:615-655.

[21]Bollegala D,Maehara T,Kawarabayashi K.Embedding semantic relations into word representations[C]//Proceedings of International Joint Conference on Artificial Intelligence,2015:1222-1228.

[22]Liu Y,Liu Z Y,Chua T S,et al.Topical word embeddings[C]//Proceedings of Association for the Advancement of Artificial Intelligence,2015:2418-2424.

[23]Pecina P,Schlesinger P.Combining association measures for collocation extraction[C]//Proceedings of Meeting of the Association for Computational Linguistics,2006:651-658.

[24]Church K,Hanks P.Word association norms,mutual information,and lexicography[C]//Proceedings of the 27th Annual Conference of the Association of Computational Linguistics,1989:76-83.

[25]Turian J P,Ratinov L A,Bengio Y.Word representations:a simple and general method for semi-supervised learning[C]//Proceedings of Meeting of the Association for Computational Linguistics,2010:384-394.

[26]Bengio Y,Ducharme R,Vincent P,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.

[27]Mnih A,Hinton G E.A scalable hierarchical distributed language model[C]//Proceedings of Neural Information Processing Systems,2008:1081-1088.

[28]Mikolov T,Kombrink S,Burget L,et al.Extensions of recurrent neural network language model[C]//Proceedings of International Conference on Acoustics,Speech,and Signal Processing,2011:5528-5531.

[29]Mikolov T,Zweig G.Context dependent recurrent neural network language model[C]//Proceedings of Spoken Language Technology Workshop,2012:234-239.

[30]Mikolov T,Sutskever I,Chen K,et al.Distributed representations of words and phrases and their compositionality[C].Proceedings of Neural Information Processing Systems,2013:3111-3119.

[31]Mikolov T,Chen K,Corrado G,et al.Efficient estimation of word representations in vector space[J].The Computing Research Repository,2013:1301.3781.

[32]Collobert R,Weston J.Fast semantic extraction using a novel neural network architecture[C]//Proceedings of Meeting of the Association for Computational Linguistics,2007.

[33]Levy O,Goldberg Y.Linguistic regularities in sparse and explicit word representations[J].Computational Natural Language Learning,2014:171-180.

[34]Li Y T,Xu L I,Tian F,et al.Word embedding revisited:a new representation learning and explicit matrix factorization perspective[C]//Proceedings of International Joint Conference on Artificial Intelligence,2015:3650-3656.

[35]Mnih A,Kavukcuoglu K.Learning word embeddings efficiently with noise-contrastive estimation[C]//Proceedings of Neural Information Processing Systems,2013:2265-2273.

[36]Tversky A.Features of similarity[J].Psychological Review,1977,84(4).

[37]Kiela D,Hill F,Clark S.Specializing word embeddings for similarity or relatedness[C]//Proceedings of Empirical Methods in Natural Language Processing,2015:2044-2048.

[38]Faruqui M,Dodge J,Jauhar K S,et al.Retrofitting word vectors to semantic lexicons[C]//Proceedings of North American Chapter of the Association for Computational Linguistics,2015:1606-1615.

[39]Liu Q,Jiang H,Wei S,et al.Learning semantic word embeddings based on ordinal knowledge constraints[C]//Proceedings of Meeting of the Association for Computational Linguistics,2015:1501-1511.

[40]Chen Z G,Lin W,Chen Q,et al.Revisiting word embedding for contrasting meaning[C]//Proceedings of Meeting of the Association for Computational Linguistics,2015:106-115.

[41]Cohen W W,Schapire R E,Singer Y.Learning to order things[C]//Proceedings of Neural Information Processing Systems,1997:451-457.

[42]Mohammad S,Dorr B J,Hirst G.Computing word-pair antonymy[C]//Proceedings of Empirical Methods in Natural Language Processing,2008:982-991.

[43]Zhang J W,Salwen J,Glass M R,et al.Word semantic representations using bayesian probabilistic tensor factorization[C]//Proceedings of Empirical Methods in Natural Language Processing,2014:1522-1531.

[44]Rothe S,Schütze H.AutoExtend:extending word embeddings to embeddings for synsets and lexemes[C]//Proceedings of Meeting of the Association for Computational Linguistics,2015,1:1793-1803.

[45]Iacobacci I,Pilehvar M T,Navigli R.Sensembed:Learning sense embeddings for word and relational similarity[C]//Proceedings of Meeting of the Association for Computational Linguistics,2015:95-105.

[46]Navigli R,Ponzetto S P.BabelNet:the automatic construction,evaluation and application of a widecoverage multilingual semantic network[J].Artificial Intelligence,2012,193:217-250.

[47]Moro A,Raganato A,Navigli R.Entity linking meets word sense disambiguation:a unified approach[J].Transactions of the Association for Computational Linguistics,2014,2:231-244.

[48]Faruqui M,Dyer C.Improving Vector Space Word Representations Using Multilingual Correlation[C]//Proceedings of Conference of the European Chapter of the Association for Computational Linguistics,2014:462-471.

[49]Hermann K M,Blunsom P.Multilingual Distributed Representations without Word Alignment [DB/OL][2019-09-24].http://arxiv.org/pdf/1312.6173.pdf.

[50]Hill F,Cho K,Jean S,et al.Embedding Word Similarity with Neural Machine Translation[J].The Computing Research Repository,2014,1412.6448.

[51]Schnabel T,Labutov I,Mimno D M,et al.Evaluation methods for unsupervised word embeddings[C]//Proceedings of Empirical Methods in Natural Language Processing,2015:298-307.

[52]Köhn A.What's in an embedding?analyzing word embeddings through multilingual evaluation[C]//Proceedings of Empirical Methods in Natural Language Processing,2015:2067-2073.

[53]Zhou G Y,He TT,Zhao J,et al.Learning Continuous Word Embedding with Metadata for Question Retrieval in Community Question Answering[C]//Proceedings of Meeting of the Association for Computational Linguistics,2015,1:250-259.

[54]Zhou G Y,Zhou Y,He T T,et al.Learning semantic representation with neural networks for community question answering retrieval[J].Knowledge-Based Systems.2015,93:75-83.

[55]Yang M C,Lee D J,Park S Y,et al.Knowledge-based question answering using the semantic embedding space[J].Expert Systems with Applications,2015,42(23):9086-9104.

[56]Zhang K,Wu W,Wang F,et al.Learning Distributed representations of data in community question answering for question retrieval[J].Web Search and Data Mining,2016:533-542.

[57]Dong H L,Wang J,Lin H F,et al.Predicting best answerers for new questions:an approach leveraging distributed representations of words in community question answering[J].Frontier of Computer Science and Technology,2015:13-18.

[58]Mikolov T,Le Q V,Sutskever I.Exploiting similarities among languages for machine translation[J].The Computing Research Repository,2013,1309.4168 .

[59]Zhang J J,Liu S J,Li M,et al.Bilingually-constrained phrase embeddings for machine translation[C]//Proceedings of Meeting of the Association for Computational Linguistics,2014,1:111-121.

[60]Le Q V,Mikolov T.Distributed representations of sentences and documents[C]//Proceedings of International Conference on Machine Learning,2014,1188-1196.

[61]Kusner M J,Sun Y,Kolkin N I,et al.From word embeddings to document distances[C]//Proceedings of International Conference on Machine Learning,2015:957-966.

[62]Sordoni A,Bengio Y,Nie J Y.Learning concept embeddings for query expansion by quantum entropy minimization[C]//Proceedings of Association for the Advancement of Artificial Intelligence,2014:1586-1592.

[63]Liu X H,Bouchoucha A,Sordoni A,et al.Compact aspect embedding for diversified query expansions[C]//Proceedings of Association for the Advancement of Artificial Intelligence,2014:115-121.

[64]Luo H Y,Liu Z Y,Luan H B,et al.Online learning of interpretable word embeddings[C]//Proceedings of Empirical Methods in Natural Language Processing,2015:1687-1692.

[65]Zhang W,Zhang K,Gu P,et al.Multi-view embedding learning for incompletely labeled data[C]//Proceedings of International Joint Conference on Artificial Intelligence,2013:1910-1916.

[66]Hyland S L,Karaletsos T,Rätsch G.A generative model of words and relationships from multiple sources[C]//Proceedings of Association for the Advancement of Artificial Intelligence,2016:2622-2629.

[67]Yang L,Sun M S.Improved learning of Chinese word embeddings with semantic knowledge[J].Chinese Computational Linguistics,2015:15-25.

[68]Sun Y,Lin L,Yang N,et al.Radical-enhanced Chinese character embedding[C]//Proceedings of International Conference on Neural Information Processing,2014:279-286.

[69]Bordes A,Usunier N,Garcia-Duran A,et al.Translating embeddings for modeling multi-relational data [C]//Proceedings of NIPS.2013:2787-2795.

[70]Dettmers T,Minervini P,Stenetorp P,et al.Convolutional 2D Knowledge Graph Embeddings[C]//Proceedings of national conference on artificial intelligence,2018:1811-1818.