2.1 低压电器常识
2.1.1 低压电器的基本知识
工作在交流1200V、直流1500V额定电压以下的电路中,能根据外界信号(机械力、电动力和其他物理量),自动或手动接通和断开电路的电器称为低压电器。其作用是实现对电路或非电对象的切换、控制、保护、检测和调节。
在数控机床电气控制系统中采用了低压电器作为基本组成元件,而且控制系统的优劣与所用的低压电器直接相关,因此掌握低压电器的基本知识和常用低压电器的结构及工作原理,并能准确选用、检测和调整常用低压电器元件,才能够分析数控机床电气控制系统的工作原理,处理及维修一般故障。
低压电器种类繁多、功能各样、构造各异,工作原理各不相同,常用低压电器的分类方法有3种。
1.按用途分类
(1)配电电器
主要用于低压配电系统中。要求系统发生故障时准确动作、可靠工作,在规定条件下具有相应的动稳定性与热稳定性,使电器不会被损坏。常用的配电电器有断路器、转换开关、熔断器等。
(2)控制电器
主要用于电气传动系统中。要求寿命长、体积小、重量轻且动作迅速、准确、可靠。常用的控制电器有接触器、继电器、电磁铁等。
2.按操作方式分类
(1)自动电器
依靠自身参数的变化或外来信号的作用,自动完成接通或分断等动作,如接触器、继电器等。
(2)手动电器
用手动操作来进行切换的电器,如组合开关、转换开关、按钮等。
3.按工作原理分类
(1)电磁式电器
根据电磁感应原理动作的电器,如接触器、继电器、电磁铁等。
(2)电子式电器
利用电子元件的开关效应,即导通和截止来实现电路的通、断控制。如接近开关、霍尔开关、电子式时间继电器、固态继电器等。
(3)非电量控制电器
依靠外力或非电量信号(如速度、压力、温度等)的变化而动作的电器,如转换开关、行程开关、速度继电器、压力继电器、温度继电器等。
2.1.2 接触器
接触器是数控机床电气控制中重要的电器,它以频繁地接通或分断交直流电路,并可实现远距离控制。其主要控制对象是电动机,也可用于其他负载。接触器不仅能实现远距离自动操作及欠电压和失电压保护功能,而且具有控制容量大、过载能力强、工作可靠、操作频率高、使用寿命长、设备简单经济等特点,所以它是机床电气控制电路中使用最广泛的电器元件。图2-1所示为接触器外形图。
图2-1 接触器外形图
接触器按其分断电流的种类可分为直流接触器和交流接触器;按其主触头的极数可分单极、双极、三极、四极、五极几种,单极、双极多为直流接触器。数控机床主要使用交流接触器。
1.交流接触器的结构
交流接触器主要由电磁机构、触头系统、灭弧装置和其他辅助部件四大部分组成。结构示意如图2-2所示。
(1)电磁系统
用来操作触头闭合与分断。它包括静铁心、吸引线圈、动铁心(衔铁)。铁心用硅钢片叠成,以减少铁心中的铁损耗,在铁心端部极面上装有短路环,其作用是消除交流电磁铁在吸合时产生的振动和噪声。
(2)触头系统
起着接通和分断电路的作用。它包括主触头和辅助触头。主触头用于接通或断开主电路或大电流电路,主触头容量较大,一般为三极。辅助触头用于通断小电流的控制电路,起控制其他元件接通或断开及电气联锁作用,辅助触头容量较小。辅助触头结构上通常常开和常闭是成对的。当线圈得电后,衔铁在电磁吸力的作用下吸向铁心,同时带动动触头移动,使其与常闭触头的静触头分开,与常开触头的静触头接触,实现常闭触头断开,常开触头闭合。辅助触头不能用来断开主电路。主、辅触头一般采用桥式双断点结构。
(3)灭弧装置
起着熄灭电弧的作用。对于大容量的接触器,常采用窄缝灭弧及栅片灭弧,对于小容量的接触器,采用电动力吹弧、灭弧罩等。
图2-2 CJ20系列交流接触器结构示意图
1—动触头 2—静触头 3—衔铁 4—弹簧 5—线圈 6—铁心 7—垫毡 8—触头弹簧 9—灭弧罩 10—触头压力弹簧
(4)其他辅助部件
主要包括恢复弹簧、缓冲弹簧、触头压力弹簧、传动机构及外壳等。
2.交流接触器的工作原理
当吸引线圈通电后,线圈电流在铁心中产生磁通,该磁通对衔铁产生克服复位弹簧反力的电磁吸力,动铁心被吸合从而带动触头动作。触头动作时,常闭触头先断开,常开触头后闭合。当吸引线圈断电或线圈中的电压值降低到某一数值时(无论是正常控制还是欠电压、失电压故障,一般降至线圈额定电压的85%),铁心中的磁通下降,电磁吸力减小,当减小到不足以克服复位弹簧的反力时,衔铁在复位弹簧的反力作用下复位,使主、辅触头的常开触头断开,常闭触头恢复闭合。这就是接触器的欠电压、失电压保护功能。接触器的图形、文字符号如图2-3所示。
图2-3 接触器的图形、文字符号
a)线圈 b)主触头 c)常开辅助触头 d)常闭辅助触头
3.交流接触器的型号和主要技术参数
常用的交流接触器有CL20、CJX1、CJX2、CJ12和CJ10、CJ0等系列,直流接触器有CZ18、CZ21、CZ22和CZ10、CZ2等系列。其型号含义如下:
其中表2-1为CJ20系列交流接触器的主要技术数据。
表2-1 CJ20系列交流接触器的主要技术数据
(续)
4.接触器的选用
接触器的选用,应根据负载的类型和工作参数合理选用。具体分为以下步骤:
(1)选择接触器的类型
交流接触器按负载种类一般分为一类、二类、三类和四类,分别记为AC1、AC2、AC3和AC4。一类交流接触器对应的控制对象是无感或微感负载,如白炽灯、电阻炉等;二类交流接触器主要用于绕线式异步电动机的起动和停止;三类交流接触器的典型用途是笼型异步电动机的运转和运行中分断;四类交流接触器用于笼型异步电动机的起动、反接制动、反转和点动。
(2)选择接触器的额定参数
根据被控对象和工作参数如电压、电流、功率、频率及工作制等确定接触器的额定参数。
1)接触器的线圈电压,一般应低一些为好,这样对接触器的绝缘要求可以降低,使用时也较安全。机床电路一般用110V。
2)电动机的操作频率不高,如水泵、风机等,接触器额定电流大于负载额定电流即可。接触器类型可选用CJ20等。
3)对重任务型电动机,如机床主电动机等,其平均操作频率超过100次/min,运行于起动、点动、正反向制动、反接制动等状态,可选用CJ10Z、CJ12型的接触器。为了保证电寿命,可使接触器降容使用。选用时,接触器额定电流大于电动机额定电流。
4)对特重任务电动机,如大型机床的主电动机等,操作频率很高,可达600~12000次/h,经常运行于起动、反接制动、反向等状态,接触器大致可按电寿命及起动电流选用,接触器型号选CJ10Z、CJ12等。
5)用接触器对变压器进行控制时,应考虑浪涌电流的大小。例如交流主轴电动机的变压器等,一般可按变压器额定电流的2倍选取接触器,型号选CJ20。
6)接触器额定电流是指接触器在长期工作下的最大允许电流,持续时间≤8h,且安装于敞开的控制板上,如果冷却条件较差,选用接触器时,接触器的额定电流按负载额定电流的110%~120%选取。对于长时间工作的电动机,由于其氧化膜没有机会得到清除,使接触电阻增大,导致触头发热超过允许温升。所以在实际选用时,可将接触器的额定电流减小30%使用。
5.接触器的使用
1)接触器安装前应先检查线圈的额定电压是否与实际需要相符。
2)接触器的安装多为垂直安装,其倾斜角不得超过5°,否则会影响接触器的动作特性;安装有散热孔的接触器时,应将散热孔放在上下位置,以降低线圈的温升。
3)接触器安装与接线时应将螺钉拧紧,以防振动松脱。
4)接线器的触头应定期清理,若触头表面有电弧灼伤时,应及时修复。
6.常见故障及处理方法
接触器在使用时可能出现的故障很多,表2-2列出了一些常见故障的原因和修理方法。
表2-2 接触器常见故障的原因及修理方法
2.1.3 控制继电器
继电器主要用于控制和保护电路中作信号转换用。它具有输入电路(又称感应元件)和输出电路(又称执行元件),当感应元件中的输入量(如电流、电压、温度、压力等)变化到某一定值时继电器动作,执行元件便接通和断开控制回路。
控制继电器种类繁多,常用的有电流继电器、电压继电器、中间继电器、时间继电器、热继电器以及温度、压力、计数、频率继电器等。
1.电压、电流、中间继电器
电磁式继电器按输入信号不同分有电压继电器、电流继电器、时间继电器等。图2-4所示为电磁式继电器外形图。
图2-4 电磁式继电器外形图
(1)电流继电器
电流继电器的线圈串接在被测量的电路中,以反映电路电流的变化。为了不影响电路工作情况,电流继电器线圈匝数少,导线粗,线圈阻抗小。
电流继电器有欠电流继电器和过电流继电器两类。欠电流继电器的吸引电流为线圈额定电流的30%~65%,释放电流为额定电流的10%~20%,因此,在电路正常工作时,衔铁是吸合的,只有当电流降低到某一整定值时,继电器释放,输出信号。过电流继电器在电路正常工作时不动作,当电流超过某一整定值时才动作,整定范围通常为1.1~4倍额定电流。
直流电磁式继电器如图2-5所示。在机床电气控制系统中,电流继电器主要根据主电路内的电流种类和额定电流来选择。
(2)电压继电器
电压继电器的结构与电流继电器相似,不同的是电压继电器线圈为并联的电压线圈,所以匝数多、导线细、阻抗大。
电压继电器按动作电压值的不同,有过电压继电器、欠电压继电器和零电压继电器之分。过电压继电器在电压为额定电压的110%~115%以上时有保护动作;欠电压继电器在电压为额定电压的40%~70%时有保护动作;零电压继电器当电压降至额定电压的5%~25%时有保护动作。
图2-5 直流电磁式继电器结构示意图
1—调整螺钉 2—衔铁 3—触头 4—线圈 5—铁心 6—磁轭 7—弹簧 8—调整螺母 9—非磁性垫片
(3)中间继电器
中间继电器实质上是电压继电器的一种,它的触头数多(有六对或更多),触头电流容量大,动作灵敏。其主要用途是当其他继电器的触头数或触头容量不够时,可借助中间继电器来扩大它们的触头数或触头容量,从而起到中间转换的作用。
中间继电器主要依据被控制电路的电压等级、触头的数量、种类及容量来选用。机床上常用的中间继电器有交流中间继电器和交直流两用中间继电器。
2.时间继电器
在数控机床电气控制中,有时需要按一定的时间间隔来进行某种控制。例如,某润滑泵需要定时起动、定时运行,以控制润滑油量,这类自动控制称为时间控制。简单的方法可利用时间继电器来实现控制。
时间继电器种类很多,常用的有电磁式、空气阻尼式、电动式和晶体管式等。它按工作方式分为通电延时时间继电器和断电延时时间继电器,一般具有瞬时触头和延时触头这两种触头。时间继电器的符号如图2-6所示。
图2-6 时间继电器的符号
a)瞬时动作 b)通电延时 c)断电延时
(1)空气阻尼式时间继电器
空气阻尼式时间继电器是利用空气阻尼原理获得延时的。它由电磁机构、延时机构、触头系统三部分组成,延时机构采用气囊式阻尼器,电磁机构可以是直流的,也可以是交流的。延时方式有通电延时和断电延时两种。外形如图2-7所示。
图2-7 空气阻尼式时间继电器外形图
(2)电子式时间继电器
电子式时间继电器在时间继电器中已成为主流产品,电子式时间继电器是采用晶体管或集成电路和电子元件等构成,目前已有采用单片机控制的时间继电器。
3.热继电器
数控机床的电动机在实际运行中常会遇到过载情况,但只要过载不严重、时间短,绕组不超过允许的温升,这种过载是允许的。但如果过载情况严重、时间长,则会加速电动机绝缘的老化,缩短电动机的使用年限,甚至烧毁电动机,因此必须对电动机进行过载保护。因此,在电动机回路中需要设置电动机过载保护装置,热继电器就是用于电动机的长期过载保护的。
热继电器是一种利用流过继电器的电流所产生的热效应而反时限动作的保护电器,它主要用作电动机的过载保护、断相保护、电流不平衡运行及其他电气设备发热状态的控制。使用最多、最普遍的是双金属片式热继电器。目前,双金属片式热继电器均为三相式,有带断相保护和不带断相保护两种。由于热惯性,热继电器不会瞬间动作,因此它不能用作短路保护。但也正是这个热惯性,使电动机起动或短时过载时,热继电器不会误动作。外形如图2-8所示。
图2-8 热继电器外形图
图2-9 双金属片式热继电器结构原理图及符号
1—主双金属片 2—电阻丝 3—导板 4—补偿双金属片 5—螺钉 6—推杆 7—静触头 8—动触头 9—复位按钮 10—调节凸轮 11—弹簧
(1)热继电器的结构及动作原理
图2-9所示为双金属片热继电器结构原理图及符号。由图2-9可见,热继电器主要由双金属片、热元件、复位按钮、传动杆、调节凸轮、触头系统和温度补偿元件等组成。发热元件是一段阻值不大的电阻丝2,串接在被保护电动机的主电路中,常闭触头串接于电动机的控制电路中。双金属片1是一种将两种线膨胀系数不同的金属用机械辗压方法使之形成一体的金属片。由于两种线膨胀系数不同的金属紧密地贴合在一起,当产生热效应时,使得双金属片向膨胀系数小的一侧弯曲,由弯曲产生的位移带动触头动作。
当电动机正常运行时,热元件产生的热量虽能使双金属片弯曲,但还不足以使热继电器的触头动作。当电动机过载时,通过发热元件的电流超过整定电流,双金属片受热向上弯曲脱离导板3,使常闭触头断开。由于常闭触头是接在电动机的控制电路中的,它的断开会使得与其相接的接触器线圈断电,从而接触器主触头断开,电动机的主电路断电,实现了过载保护。故障排除后,按下复位按钮,使热继电器触头复位。热继电器动作电流的调节是通过旋转调节凸轮10来实现的。
(2)热继电器的技术参数
目前,国内生产的热继电器主要有JR0、JR1、JR2、JR9、R10、JR15、JR16等系列。JR0、JR1、JR2和JR15系列的热继电器均为两相结构,是双热元件的热继电器,可以用作三相异步电动机的均衡过载保护和定子绕组为联结的三相异步电动机的断相保护,但不能用作定子绕组为△联结的三相异步电动机的断相保护。表2-3为JR20系列热继电器技术数据。
表2-3 JR20系列热继电器技术数据
(3)热继电器的选用
热继电器主要用于电动机的过载保护,使用中应考虑电动机的工作环境、起动情况、负载性质等因素,具体应按以下几个方面来选择:
1)热继电器结构型式的选择:星形联结的电动机可选用两相或三相结构热继电器,三角形联结的电动机应选用带断相保护装置的三相结构热继电器。
2)热元件的整定电流选择:一般将整定电流调整到等于电动机的额定电流;对过载能力差的电动机,可将热元件整定值调整到电动机额定电流的0.6~0.8倍;对起动时间较长,拖动冲击性负载或不允许停车的电动机,热元件的整定电流应调节到电动机额定电流的1.1~1.15倍。
3)当电动机起动时间过长或操作次数过于频繁时,会使热继电器误动作或烧坏电器,故这种情况一般不用热继电器作过载保护。
4)对于重复短时工作的电动机(如起重机电动机),由于电动机不断重复升温,热继电器双金属片的温升跟不上电动机绕组的温升,电动机将得不到可靠的过载保护。因此,不宜选用双金属片热继电器,而应选用过电流继电器或能反映绕组实际温度的温度继电器来进行保护。
(4)热继电器的常见故障及维护方法(见表2-4)
表2-4 热继电器的常见故障及维护方法
4.速度继电器
速度继电器根据电磁感应原理制成的,用于转速的检测,如用来在三相交流异步电动机反接制动转速过零时,自动断开反相序电源。图2-10所示为其结构原理图。
据图2-10知,速度继电器主要由转子、圆环(笼型空心绕组)和触头三部分组成。其转子由一块永久磁铁制成,与电动机同轴相连,用以接受转动信号。当转子(磁铁)旋转时,笼型绕组切割转子磁场产生感应电动势,形成环内电流,此电流与磁铁磁场相作用,产生电磁转矩,圆环在此力矩的作用下带动摆锤,克服弹簧力而顺转子转动的方向摆动,并拨动触头改变其通断状态(在摆锤左右各设一组切换触头,分别在速度继电器正转和反转时发生作用)。
速度继电器的动作转速一般不低于120r/min,复位转速约在100r/min以下,工作时,允许的转速高达1000~3600r/min。
图2-10 速度继电器结构原理图
1—转轴 2—转子 3—定子 4—绕组 5—摆锤 6—簧片 7—触头
速度继电器的图形及文字符号如图2-11所示,文字符号为KS。
图2-11 速度继电器的图形及文字符号
2.1.4 其他常用低压电器
1.刀开关
(1)刀开关的作用
刀开关是一种手动配电电器。主要用来隔离电源或手动接通与断开交直流电路,也可用于不频繁的接通与分断额定电流以下的负载,如小型电动机、电炉等。刀开关是最经济但技术指标偏低的一种刀开关。刀开关也称开启式负荷开关。
(2)外形与结构
图2-12所示为刀开关的外形与结构图,它主要有与操作瓷柄相连的动触刀、静触头刀座、熔丝、进线及出线接线座,这些导电部分都固定在瓷底板上,且用胶盖盖着。所以当刀开关合上时,操作人员不会触及带电部分。胶盖还具有下列保护作用:
1)将各极隔开,防止因极间飞弧导致电源短路;
2)防止电弧飞出盖外,灼伤操作人员;
3)防止金属零件掉落在刀开关上形成极间短路。熔丝的装设,又提供了短路保护功能。
图2-12 刀开关的外形与结构图
(3)刀开关技术参数与选择
刀开关种类很多,有两极的(额定电压250V)和三极的(额定电压380V),额定电流由10~100A不等,其中60A及以下的才用来控制电动机。常用的刀开关型号有HK1、HK2系列。表2-5列出了HK2系列部分技术数据。
正常情况下,刀开关一般能接通和分断其额定电流,因此,对于普通负载可根据负载的额定电流来选择刀开关的额定电流。对于用刀开关控制电动机时,考虑其起动电流可达4~7倍的额定电流,选择刀开关的额定电流,宜选电动机额定电流的3倍左右。
表2-5 HK2系列开启式开关熔断器组的技术数据
(4)使用刀开关时的注意事项
1)将它垂直地安装在控制屏或开关扳上,不可随意搁置;
2)进线座应在上方,接线时不能把它与出线座搞反,否则在更换熔丝时将会发生触电事故;
3)更换熔丝必须先拉开刀开关,并换上与原用熔丝规格相同的新熔丝,同时还要防止新熔丝受到机械损伤;
4)若胶盖和瓷底座损坏或胶盖失落,刀开关就不可再使用,以防止安全事故。
2.低压断路器
低压断路器也称自动开关或自动空气断路器。它是一种既能作开关用,又具有电路自动保护功能的低压电器。
(1)断路器的组成与分类
断路器由三大部分组成:触头和灭弧系统,通断电路的部件;各种脱扣器,检测电路异常状态并作出反应,即保护性动作的部件;操作机构和自动脱扣机构间联系部件。
按结构分类自动开关有万能式(框架式)和塑料外壳式(装置式)两种。控制电路中常用塑料外壳式自动开关作为电源引入开关或作为控制和保护不频繁起动、停止的电动机开关,以及用于宾馆、机场、车站等大型建筑的照明电路。其操作方式多为手动,主要有扳动式和按钮式两种。万能式主要用于供配电系统。
自动开关与刀开关和熔断器相比,具有结构紧凑、安装方便、操作安全的优点,而且在进行短路保护时,由于用电磁脱扣器将电源同时切断,避免了电动机缺相运行的可能。另外,自动开关的脱扣器可以重复使用,不必更换。
(2)低压断路器的型号和主要技术参数
常用的塑壳式断路器主要有DZ5、DZ15、DZ20等系列。低压断路器的型号含义举例说明如下,其技术数据见表2-6。
表2-6 DZ15系列塑壳式断路器的技术数据
用于电动机保护的断路器的热脱扣器要根据电动机的额定电流进行选择和整定,而瞬时过电流电磁脱扣器则按照电动机额定电流的12倍来选择,以保证在电动机起动电流的峰值不至于动作。
3.熔断器
(1)熔断器的结构与用途
熔断器的结构一般分成熔体座和熔体等部分。熔断器是串联连接在被保护电路中的,当电路电流超过一定值时,熔体因发热而熔断,使电路被切断,从而起到保护作用。熔体的热量与通过熔体电流的平方及持续通电时间成正比,当电路短路时,电流很大,熔体急剧升温,立即熔断,当电路中电流值等于熔体额定电流时,熔体不会熔断。所以熔断器可用于短路保护。由于熔体在用电设备过载时所通过的过载电流能积累热量,当用电设备连续过载一定时间后熔体积累的热量也能使其熔断,所以熔断器也可作过载保护。常用的熔断器外形图如图2-13所示。
图2-13 常用的熔断器外形图
(2)熔断器的分类和主要技术参数
熔断器按结构分有:半封闭瓷插式、螺旋式、无填料封闭管式和有填料封闭管式熔断器。按用途分:工业用熔断器、半导体保护用熔断器、快速熔断器和特殊熔断器。典型产品有RL6、RL7、RL96、RLS2系列螺旋式熔断器,RLIB系列带断相保护螺旋式熔断器,RT18、RT18-□X系列熔断器以及RT14系列有填料密封管式熔断器。还有国外引进技术生产的NT系列有填料密闭式刀犁触头熔断器与NGT系列半导体器件保护用熔断器等。熔断器的主要技术参数:额定电压、额定电流、极限分断能力、熔断电流。
(3)熔断器的选择
对熔断器的要求是:在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。
选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。
熔断器的额定电压要大于或等于电路的额定电压。
熔断器的额定电流要依据负载情况而选择。
1)电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。
2)电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。
对于多台电动机,要求
多台IFU≥(1.5~2.5)INMAX+∑IN (2-1)
式中 IFU——熔体额定电流(A);INMAX——最大一台电动机的额定电流(A)
4.主令电器
(1)控制按钮
控制按钮简称按钮,是广泛应用的一种主令电器,它主要用于远距离操作具有电磁线圈的电器,如接触器和继电器,向它们发出“指令”,也可用于电气联锁。可以说按钮是操作人员和控制装置之间的中间环节。
控制按钮结构如图2-14所示,它主要由按钮帽、复位弹簧、动触头、常闭静触头和常开静触头组成。在工作人员没有按压按钮帽时,动触头在复位弹簧作用下与常闭触头接触,将按钮帽按下,动触头就向下移动,先脱离常闭静触头,然后同常开静触头接触。当操作人员的手指离开按钮帽以后,在复位弹簧作用下,动触头又向上运动,恢复原来的状态,在复位过程中,先是常开触头分断,然后是常闭触头闭合。图2-14中还画出了按钮在电路图中的符号。
按钮采用积木式拼接装配结构,触头数量可根据需要任意拼接,最多可达6常开和6常闭。
目前,常用的按钮有LA18、LA19、LA20和LA25等系列。它们适用于交流500V,直流440V,额定电流为5A,控制功率为交流300W,直流70W的控制电路。在操作频率1200次/h的情况下,其电寿命不少于交流50万次,直流20万次。
图2-14 控制按钮结构示意图
a)外形 b)结构 c)符号
(2)行程开关
行程开关用来反映工作机械的位置变化(行程),用以发出指令,改变电动机的工作状态。如果把行程开关安装在工作机械行程的终点处,以限制其行程,就称为限位开关或终端开关。它不仅是控制电器,也是实现终端保护的保护电器。
行程开关主要由类似按钮的触头系统和接受机械部件发来信号的操作头组成。根据操作头不同,行程开关可分为直动式、滚动式和微动式。按触头性质可分为有触头和无触头式。行程开关型号和符号含义如下:
图2-15 所示为行程开关型号和符号示意。
图2-15 行程开关型号和符号
a)常开触头 b)常闭触头