![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
2.2 课后习题详解
2.1 设粒子限制在矩形匣子中运动,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image196.jpg?sign=1739004104-QUdRXlUGW15wScPBRODmJfYXxsIavlFj-0-201543aeb6c921fafbd96207137538f3)
求粒子的能量本征值和本征波函数,如a=b=c,讨论能级的简并度。
解:在匣子内
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image197.jpg?sign=1739004104-XA8SGEIh5ezjonpKcO9pJQHl968VDCOG-0-5dec7b989adbeca6d50002a06cde88e0)
即其中
采用直角坐标系,方程的解可以分离变量。
再考虑到边条件能量本征函数可表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image201.jpg?sign=1739004104-8nXu4nhbhh0x8xNqSXlr4CNhybF81uN7-0-c8110bf7c96b7e823ede9a9ba7e3e2fd)
再考虑到可以求出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image203.jpg?sign=1739004104-VEcbQBn5JZJXkIjtAOJ5ShIxFkOStXAh-0-e3e0b7f69f4250676e25e46fe85d3fc1)
粒子的能量本征值为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image204.jpg?sign=1739004104-uwWxDgFnT40oATdQNgpCOIjjjlpzCqmx-0-399fae9b0b8a684e309841cabb7fb97b)
而归一化的能量本征函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image205.jpg?sign=1739004104-DTmHd7ZShpnUuUMf0UQmRKh9L4dAOo31-0-915532bd3b77ff13a3d2a58ee66e4bd6)
对于方匣子a=b=c,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image206.jpg?sign=1739004104-zCL92aVoWwuBn1apldnBYdsvjoIQgKlJ-0-a570a4d8ef8990af6bed794b0b2040c0)
能级的简并度为满足条件的正整数
解的个数。
【参阅:《量子力学》,卷Ⅱ,PP.420~421,练习2】
2.2 设粒子处于一维无限深方势阱中,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image209.jpg?sign=1739004104-UEZhn4RWEXrLFaQjvCPqrnLJUPLxBsVL-0-42de53d807e7ae408022a830a7a76dcd)
证明处于能量本征态的粒子,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image211.jpg?sign=1739004104-YIa3fra7xJLBhkWT2DVHXndaekvVp4ba-0-c2863eafa4e75013bb8adf1d1364f707)
讨论的情况,并与经典力学计算结果比较.
证明:设粒子处于第n个本征态,其本征函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image213.jpg?sign=1739004104-3z7mUiNTgiCWhTCu3t5b1iCyh2AzS0Ok-0-78cb6222a9b2b57ffaaa5da72b21e92d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image214.jpg?sign=1739004104-vYRLRmKlgZOCNlNITWaTzDbtxQWNZD31-0-dbea73972d62cd355e5a2a25bf8ecdb2)
在经典情况下,在区域(0,a)中粒子处于dx范围中的概率为,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image216.jpg?sign=1739004104-5m5iaRWOUhm7IKyTDeUcuvvrj6vchQud-0-c7944252d60344f18e603cf5e1e3d2be)
当,量子力学的结果与经典力学计算值一致.
2.3 设粒子处于一维无限深方势阱中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image218.jpg?sign=1739004104-d7MnuzmFfutEy0yiTUFgicNkqLawcH2e-0-7226415e10fe38584e1f8ddc62e90eb4)
处于基态(n=1,见2.2节式(12)),求粒子的动量分布.
解:基态波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image219.jpg?sign=1739004104-LMkrxxVU0PYqVFUS7yqe24zonCH15D2Z-0-8f3c46db8b87bccc96ace50d46290ed5)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image220.jpg?sign=1739004104-3b4FMJBUb67VES4DovkZZU0bgbhQInIS-0-1d11d5ae669f22da3d88a19f7c8fe5f3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image221.jpg?sign=1739004104-pcXTUQU4nCAjmR7VOsPkoxlyZTsSUzxu-0-50bcc039fa5142994ee91fb31d433e3a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image222.jpg?sign=1739004104-6pqdFGC4Cg48TgDrQ2XwxF5L1r1zcn2Z-0-df03fe46d235d748019529c6ff7db9ed)
测量粒子的动量的概率分布为。
【参阅:《量子力学》,卷I,PP.87~88,练习4和练习5】
2.4 设粒子处于无限深方势阱中,粒子波函数为
A为归一化常数,(a)求A;(b)求测得粒子处于能量本征态
的概率
特别是
作图,比较
与
曲线.从
来说明两条曲线非常相似,即
几乎与基态
完全相同,
解:(a)根据归一化条件
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image234.jpg?sign=1739004104-dg18Khi2IXtvzCSdoCmAvsQCIQpdHeeD-0-65731a3f45f2d72c7bfbbdcd70767e28)
可得,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image236.jpg?sign=1739004104-71hHVfuRrv69JngAYT5rQfCMDs3PWMiN-0-0116e9c74e5344210bfc6a045b75978c)
(b)用
展开,
,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image240.jpg?sign=1739004104-T2SHfW4znhczAM2WtDp394qQ2hSqMs0y-0-e1e99dc00f02354f6e9f413053c84293)
只当n=1,3,5,…时,才不为0,特别是
,非常接近于1.考虑到归一化条件,
,可知
概率几乎为0,即
与
概率几乎完全相同.
(c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image247.jpg?sign=1739004104-QQgo2ufs8rDOzgeug2SiX2gGZrH34FeH-0-27ec1a23fcf4c7bd92252d42e22849a1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image248.jpg?sign=1739004104-VabRr1MWyxQGDSxYcOQxAB33sitNM9iR-0-d3041bc6f7e3d2fd2310e285a6a53352)
2.5 同上题,设粒子处于基态(n=1),.设t=0时刻阱宽突然变为2a,粒子波函数来不及改变,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image252.jpg?sign=1739004104-jhhYdkAZZEdGwExlKk5HKBu3mBj38iUa-0-5a16a270ddee9c5a3b46fe16452c01f2)
试问:对于加宽了的无限深方势阱
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image253.jpg?sign=1739004104-hMaJjWyHuGMiTLawBXwwSC2NjhyEBFYS-0-bcf9349e8a9be0cab4c4e3748c79fb20)
是否还是能量本征态?求测得粒子处于能量本征值
的概率.
解:对于加宽了的无限深方势阱,能量本征值和能量本征态分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image256.jpg?sign=1739004104-bTfxY3qLf2pZ6BVAjkn0HV34SpSrPBvG-0-1c1fd81e38960d5696505805ab1faae2)
可见不再是它的能量本征态,.由于势阱突然变宽,粒子波函数和能量来不及改变,粒子能量仍保持为
,而
可以按
展开,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image261.jpg?sign=1739004104-tpEiFgguXiMFo6jaWjH5AZyYSfNxrG58-0-cf13692c7dee30cfbb987785dc2e10ab)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image262.jpg?sign=1739004104-SLLFlIqPWarzgDRPasMKpZnMbq0FqFUI-0-0eddf2b512be2e37aa77d2fc6002d138)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image263.jpg?sign=1739004104-vMGKWViiUpWdt6mMAJEJPlJTxlfIZUwu-0-fa5355b8458f0c1247c84b846016e5f0)
经过计算可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image264.jpg?sign=1739004104-5459cNnX1eo1Tdc4fkmoNOB9Rx4HLoHo-0-b8f588e69bd3edb64b0cf998856ae9d2)
所以粒子处于,即能量仍为
的概率为
.
2.6 设粒子(能量E>0)从左入射,碰到下图所示的势阱,求透射系数与反射系数.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image268.jpg?sign=1739004104-zrqdmNKR2VSm1QrPG1e0JgztLH2QMep3-0-752d4c56ae5a459562ba49d10bdf6576)
答:考虑上图所示势阱中粒子,可证明粒子碰到侧壁的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image269.jpg?sign=1739004104-9qs7Y1NfZEzHzXL1UGpBVnfg2K012729-0-c75d99ebd6511cef043404858e75ac76)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image270.jpg?sign=1739004104-JXZr5U7v9diNOWm6TftJjQBQbQpO2Xlt-0-5cf2a682dda6056103a69ed91c81c695)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image271.jpg?sign=1739004104-Ozzdu2wDqDMuoZw46bwrXpIi6JxzQtrD-0-7cc4f4dc8ce671fbaf9d801657d41c79)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image272.jpg?sign=1739004104-SDoV8tPebmGSJhIXQO79YcpBzRZEENvx-0-a3131962bde27724a8c3f2d88d53ace4)
不难验证概率守恒关系式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image273.jpg?sign=1739004104-RiJRF2HMfdd3Q32I8R5vLQsNXZFzzyDf-0-3afb5c209e3c46ed29af739aaf7d7fbe)
【参见《量子力学》卷I,108页,有详细解答.】
2.7 利用Hermite多项式的递推关系(附录A3,式(13)),证明谐振子波函数满足下列关系:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image274.jpg?sign=1739004104-0ybulj98NpEAjLKTQ5Bq6DpwFqtAfbNd-0-e3b06a48cfae79a31c9169bcca9328ac)
并由此证明,在态下
证明:已知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image277.jpg?sign=1739004104-3AcGH67s4vp3pDZwoyPReUErj1wAvOSE-0-8152e3ada77c4749b69ae354854a0c29)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image278.jpg?sign=1739004104-29inB4t49rTMbK7D6xFztZAZFpOxeQw6-0-21ec15c3bb89283a137a83d6220880bd)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image279.jpg?sign=1739004104-YbjBvFx2xBQuJpP4v6WBPS787Uu043CR-0-e209c35d060db23111b328055af92c63)
利用本征函数的正交性,可得.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image281.jpg?sign=1739004104-ieWKTqfppwvzJprYfuyoFWcR9h70Tfqa-0-c1e3fd8b1700f2c33a65ffa7587214bb)
同样,利用本征函数的正交归一性,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image282.jpg?sign=1739004104-kbSBYrqOxa084fPqVyaAtgZiV5xq8jC8-0-e548b789413463a867bb1fcdcc487a08)
2.8 同上题,利用Hermite多项式的求导公式(附录A3,式(14)),证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image283.jpg?sign=1739004104-O6lqp4Yyckm00QzPh3bbQZofK2KEhTGN-0-3067a8272347d7934c6b20b1a80cef9a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image284.jpg?sign=1739004104-QQUMIRadBzX4GUuAxGV0NlRrZ7oRW99O-0-3afbe9ddee48bf61fb02081f4d9ef8d2)
并由此证明,在态下
.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image287.jpg?sign=1739004104-XcrHpWI6Mir44iZ3FEnSTNbL7dUVmXhG-0-e41d4e97b889276ba5b24d0deee0a4fa)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image288.jpg?sign=1739004104-qNw1AiwGjqJHadkHC4U2Acs5l9nyPdHt-0-b2bb64d1c900bcb1988ad0d7ac5c2ce6)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image289.jpg?sign=1739004104-E0Wk53HDCsJnZ1C1Du9w4vsiyx38B80t-0-57c8f6efa4b9d211aae1a120b2235d47)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image290.jpg?sign=1739004104-PJysuPO4eBjxejCZsVDjiDvqKeCvwYzb-0-2d2312d00c8534c4e6b6b6ca011d5041)
利用本征函数的正交性归一性,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image292.jpg?sign=1739004104-ZMNrLET3AUBGGDtJJrkYDnBzf3kNnbK5-0-b6809eaf9aee1debe6a3d2cb12b12741)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image293.jpg?sign=1739004104-svDfUp5bnIgCDoFW1bqp7PA1zvmxx6wz-0-18faf66add1c434019232de6519804af)
类似,利用本征函数的正交归一性,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image294.jpg?sign=1739004104-ndaENPmRtw9TzJtgRpLybNgbhpWrwlwX-0-1434ee2c86c15bd492a90d9e8254333e)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image295.jpg?sign=1739004104-CSydb4X1bd2zoYaLUhI7khdzaMUKA4EC-0-d11ab82c8cffd6d757b386b4e9b5f46f)
2.9 谐振子处于态下,计算
.
解:按2.7题,在态下
,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image300.jpg?sign=1739004104-6nLlIfXOl784JtGhP4H5ZsnSJpdbalSr-0-2e9fcf0f520e4e6d3e1784bd868b5a89)
按2.8题,在态下
,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image303.jpg?sign=1739004104-OAjBkVPsWcCa6qnXXCzckwd8JCStw6JU-0-c4472026a0a42a3c7cfd172ff64b62cd)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image304.jpg?sign=1739004104-OvKVTO1Ap1VbjqlloC5JhNidfrsHzMTS-0-aca8c95e360a0f4c3c121dbe4ac83f38)
2.10 荷电a的谐振子,受到外电场的作用,
,求能量本征值和本征函数.(提示:对V(x)进行配方,
相当于谐振子势的平衡点不在x=0,而在
点)。
【解答参见《量子力学习题精选与剖析》[上],74页,3.7题】
3.7 电荷为q的自由谐振子,能量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image310.jpg?sign=1739004104-CIaz2JxVoyaN7qMASt3AwZQaE8eMsL4S-0-84588b227f433ce6d4ea27a05e8fa0b0)
式(2)中势能项可以写成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image323.jpg?sign=1739004104-0A6o5uheNoVfilMsZEQ4ZJWTfIaE00lc-0-14683310e9aa496551cd26e02f7c9fe7)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image324.jpg?sign=1739004104-3VvAqmh4YCG7CMeKqVyocJTbPH6wS4cv-0-04b0207b96260b29ff1e89fd588a3855)
如作坐标平移,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image325.jpg?sign=1739004104-SjpTQGOlVocWF0CFhzYEH1DLZdIT6Bmq-0-157c690cad7d6018d33fceac77a41063)
由于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image326.jpg?sign=1739004104-AqCGJGLzQmODi1GpIL04RKoMQ4zDFOJf-0-fa20fe8a11d5e88ccfde10ad84c54d3e)
H可以表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image327.jpg?sign=1739004104-pMUbKo7DY0IhkZ8vX09Q5lg6O5RFpkSP-0-c9ec04865eabdb82e4505a3ce37b6f02)
比较式(1)和(6),易见H和H0的差别在于变量由x换成x’,并添加了常数项,由此可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image329.jpg?sign=1739004104-AAkRpNNSTCqDnn3lFYCY4OhJm8LqzhOu-0-2db85db8446ce1e73eec359cef61545f)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image330.jpg?sign=1739004104-mJ2j4rsHYMowIi9F1FpYcRKpJ0oxfFyN-0-b396fbe815ebdef3aedca33b5edbe194)
如所周知,自由振子的能级为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image331.jpg?sign=1739004104-OqYTXFWUrnbrK9jiWHHJmUdzy5uOxdUC-0-f287f892f8c66e2a54b64111c9ef9ace)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image332.jpg?sign=1739004104-Byn2o19HR0LgYjH0SEOnXnvrLmctskc3-0-3c296d8dfb638f92bc0378290ac714b3)
如引入坐标平移算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image333.jpg?sign=1739004104-qxD7M3UbObTRa3nQzdOK19gA4YAhyv11-0-d5fcba051705e61bee95e97935c7b596)
它对波函数的作用是
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image334.jpg?sign=1739004104-lAK0v5WBtuOKxreguTgWCLHqNe3EE29x-0-9b90bbf87493865afae8a2d13ae4dd82)
则H和H0的本征函数可用平移算符联系起来:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image335.jpg?sign=1739004104-tfq41nzisXz7MClqmlUAbGtY0H710RK8-0-4c9dc3876aaf79b4e7b216476380b075)
反之,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image336.jpg?sign=1739004104-9rs8tgUUlqhYDCIRVohd28oTYCAMuX4h-0-52e65a801e776d082e4353f9467e0f4a)
解二:利用自由振子的升、降算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image337.jpg?sign=1739004104-a5rSF2b54eS0reevmlR5BiAvZk0eNKTd-0-6188fd6701785c3fd32a4417454f0810)
将H0及H表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image338.jpg?sign=1739004104-BcxEtxCzoZ9nsGyJtpJMQvXBqnBgyHyl-0-e64dd9f7911748a30cec77b57022437b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image339.jpg?sign=1739004104-apRWsZGQqk6Z1gjpqY91mbNvOxnLt8kl-0-1f55928e39eda03ed343ba1a62df47b1)
引入
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image340.jpg?sign=1739004104-1OgaHWmbCVbtMaapeRXFCyOy6Iui2Tks-0-dc66b01efc53b2d64b8e9aac78d0948d)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image341.jpg?sign=1739004104-MB8YscgB6Vhbrc4kZHWbx13qeiDbrMFo-0-1510dfc5328a08081dac3e17f2599c93)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image342.jpg?sign=1739004104-PtvopxoEEfqBSDbydVg0teQAN7vtJlzg-0-ef24dee0593033b648accdb99670cfda)
比较式(14)、(16),H和H0的差别在于,以及添加了常数项
在题3.1中,从基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image345.jpg?sign=1739004104-ar613YOLzC18ZAQWNuKCChAYwySLLXwm-0-e1b426bbca0d26c5008cc68bba659616)
出发,证明了能级公式(9)以及本征态之间的递推关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image346.jpg?sign=1739004104-U7Yg6urVUaVEgZOlZUz8M2pGuUUNoLPZ-0-3d02fa2379b093137ed850ad23531680)
并得出了基态波函数满足的方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image347.jpg?sign=1739004104-cbHJMcsISnI8QjLdNXVJzllQYJxRWJaY-0-3ef626aa04dc4a43520e897a867e7ad7)
由于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image348.jpg?sign=1739004104-aWJ0FJd40kmv4EVjA3Zim3KgWGg0RN6z-0-84591fb2a4b03b8e8fd0da098b41faf5)
所以用同样的逻辑推理也可得出H的本征值和本征函数的类似结论,只需在整个推导过程中用代替a,用
代替
的本征值显然就是式(10).本征函数的递推关系及基态方程则是
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image352.jpg?sign=1739004104-fOZErmjyj2tJHq7GYvRSdmaoAlchxh87-0-18407515ade3bd14120e89e639133cdc)
等价于
,因此将
中x换成
,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image357.jpg?sign=1739004104-il8U1UKfrjlpIjWFxbVZ0YHDMGCErJC8-0-d90bbb04324741d9e1040b31261fd5da)
和
可以通过算符
联系起来:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image361.jpg?sign=1739004104-C6kyqdXtwhV9d895JrClpLlW66E8nea5-0-ac97e046ae6d7ca0e1ee04fd7f6947ca)
2.11 设粒子在下列势阱中运动,求粒子的能级,
解:Schrodinger方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image363.jpg?sign=1739004104-GQhrjH581fdCc5r2f9YcIW1CJJA7NxCm-0-6bb71328127a53c0dd7fdb86a47f6f25)
此即Hermite多项式所满足的微分方程,但要求满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image365.jpg?sign=1739004104-Ieunsfy6RIKVmMkXEk2XTLqIO2vLV6JP-0-373c3756577c9abc3ae9c822a57b7264)
要保证则必须
(见《量子力学教程》,49页,(11)式),方程(1)的解为
,
为归一化常数),相应能量本征值为
但根据x=0点的边界条件
只能取奇数
因此能量本征值只能取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image373.jpg?sign=1739004104-2a4OWsmSjA4f6X87cHaEaElsOk5qhrmC-0-830392172be0f26941f4be4855885897)
即只包含《量子力学教程》2.4节中给出的谐振子解中的奇宇称解,对于奇宇称解,自动保证
.
2.12 一维无限深方势阱中的粒子,设初始时刻(t=0)处于与
分别为基态和第一激发态,求
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image379.jpg?sign=1739004104-R3YzV1SSX0UgOTVIAtk69Vm25gOAbMdC-0-00ac6c7206cf966ee2777d8c19de38da)
(b)能量平均值;
(c)能量平方平均值;
(d)能量的涨落
(e)体系的特征时间计算
解:(a)按《量子力学教程》21页上的讨论(见21页,(34)式和(37)式).可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image385.jpg?sign=1739004104-4LYLLL55XQDkaXn7Qef7QkcNhEBc067P-0-63b49c6c85a64da2ef437869ee6514c8)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image386.jpg?sign=1739004104-2UIGmO8GHZfMcvEWW06ZVIINqu9PtDuK-0-b2a6debd545b9826ae5bd7a618c5e2c3)
(b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image387.jpg?sign=1739004104-Vbe9f1wJaFb3Lc8gtPc9oGuk6mEA2nrZ-0-8fa87e51e99b9b36d030cc3ba0641413)
(c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image388.jpg?sign=1739004104-Qge2ZW2cU1VDGqQ8NznjBS7nJdrTgm8a-0-6677db78a9bef444c6c34f1fec0a36c3)
(d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image389.jpg?sign=1739004104-1Tzzzx69wBWqPPaPBSlJ6dzqAx91pVIV-0-914d43fbbc1df1ba2262def8a938974f)
(e)由
可以求出周期τ
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image392.jpg?sign=1739004104-xmwajr3FmeIykd1kIrpR5DpnuYyKB3CS-0-9978de50bb5853780759fd679295daad)
特征时间
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image393.jpg?sign=1739004104-NNHo11qyaA5T5yof7rNgtPWAZNq8sxAC-0-c5e08f413474da1cc76337516c7fe2f5)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image394.jpg?sign=1739004104-sGqmdXJGoOOaJ09nc7yDOBQlpYWuBhnA-0-5191e10871ed9da4577e4011021e3c9b)
2.13 设粒子处于半壁无限高的势场中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image395.jpg?sign=1739004104-Uxfz5v4J3JL8yuG5uxfQrk9xdqwRrZB2-0-7260723339f7aa458fdc40b1077dcd5b)
求粒子能量本征值,以及至少存在一条束缚能级的条件.
【解答参见《量子力学》,卷1,94~97页,例1,有详细解答.】
*例1 半壁无限高的势垒(下图)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image396.jpg?sign=1739004104-TwEDwA1F8JiYd6s0Dmi0tgglpe3N5mPL-0-0d3d9433962f6e87e37a2ed189cd2402)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image390.jpg?sign=1739004104-a9oJtXdInsdO32UJ8TBczY7DX7kC5T3Y-0-1d334a5491c3e169c5239f261ff93f92)
考虑一情况,分三个区域讨论:
①z<0区域有
②0<x<a区域有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image400.jpg?sign=1739004104-OumWF8qjqlI7n1W9CArnCwX4b5HB5ign-0-f95e90d2c26dc6e453a61a119abeb414)
利用的边条件,可知
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image403.jpg?sign=1739004104-FiunPNoeaMeJOLWDUJVe7AcUUubu2LGa-0-69a2719b9f750eab3b712ba7b337f9f8)
③x>a区域,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image404.jpg?sign=1739004104-pYZcAXuw2bmlYEZ9LwlRVhwsm6XYi6fa-0-430b145c2478f777007eb2cb4c7a54a9)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image405.jpg?sign=1739004104-bhJXV79a0Aav7nUVdONk165ptnIbYuDc-0-d339c8521220fecdf49f2a19de0454ed)
考虑到处,要求
为0的边界条件,只能取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image408.jpg?sign=1739004104-EHIdrDzjJuVjud5sMxRvkZb9ZsFSBH2C-0-8bfb854a02a86463ea56d13753f72778)
然后根据x=a处的连续条件,可求出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image410.jpg?sign=1739004104-cMJVpprSBih44FxBfnolyTE6WjEqoET1-0-3d163b209ad41409b83872ce6e6456a7)
[试与式(34)比较],上式可改写成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image411.jpg?sign=1739004104-Hch90Vb3eloMez5Vmqbel6Lg4TtA6RkR-0-abf42e5c4de3af31bce71ce718b9f25b)
所以ka处在第Ⅱ,Ⅳ象限中.上式还可改为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image412.jpg?sign=1739004104-pdZ3jk049KXuC7tkYO36ilE6LRi8rSFx-0-b96bb0be908c531e0089a9fd21a12687)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image413.jpg?sign=1739004104-arcRayeqfzguJ9RE2ruPp2AXgRx1c6dl-0-ceb5f423f460f3dfbfc286a70f4a0818)
用图解法可以近似求出方程(47)的根.下图是有5个根的情况,这5个根是y=的交点(交点在Ⅱ,Ⅳ象限中者).
当,即无限深方势阱情况,直线
变成y=0(横轴),它与
的交点(在Ⅱ,Ⅳ象限中者)为
ka=nπ,n=1,2,3,…
与式(6)完全一致.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image418.jpg?sign=1739004104-xsyF0m2HVOOC4VS2gyUEMYtXG9LOo8RU-0-b1185839fc6ae94e50791e6c33f85693)
与对称势阱不同,半壁无限深势阱中的粒子,并不一定存在束缚态,而至少有一个束缚态存在的充要条件为:在ka=π/2处,y=ka/k#0a≤l,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image419.jpg?sign=1739004104-pGY2ume3IsA72W42ht5gGkKUCxaG3gp6-0-80338f7732361a52db8fbb8fd3834ece)
或
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image420.jpg?sign=1739004104-KvQsFMFGDgsQFPEHl5DMqASTm26JZDZ4-0-7074ab29bfa1087f28c9d6a6a16b4f7d)
上式平方,利用式(48),得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image421.jpg?sign=1739004104-CLfXn3aO0SetSF3glscapW7yuX6rU6FZ-0-6ad838c20e42045cb0ea5cb00ba15cfc)
这是对势阱的深度V0及宽度a的限制.
2.14 求不对称势阱(见下图)中粒子的能量本征值.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image422.jpg?sign=1739004104-9AjrIelKWQeQvRjChp14u9oVStiXij3W-0-78d1ee476736b9fe61eca6886dbd2bc3)
解:(以下限于)讨论离散能级,即情况,这时,Schrodinger方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image424.jpg?sign=1739004104-higDoXNxZwju5tgPVgS4u10BujVp4etI-0-674fb328b734cbc03dea3a3b33af2598)
考虑到束缚态的边条件
可表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image427.jpg?sign=1739004104-wXkM6qcXwXVSGvA2o2mwjhHHk7nBARur-0-572e0b5c4b1ad5f8a68ddfb7677b0f6f)
由在x=0和a处的连续条件,得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image429.jpg?sign=1739004104-3jH0EOq5InUgheqTqVvbiZATjcCPJuP6-0-7f289b55a00696a300fccfe5fb6f879b)
(1)式等价于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image430.jpg?sign=1739004104-zylJ0RlD3CN3OSX6wiCjm6Y4I093jEwk-0-2e4f0d9b0f137f506d73586782b39530)
从(2)式中的两式消去得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image432.jpg?sign=1739004104-cLnKKIyu0sylFaAdyRcvJotV214VzF8P-0-3150896e3cc3ea7c65937aafb0189c54)
当时,并不是任何条件下都有束缚态,由(3)式可知,仅当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image434.jpg?sign=1739004104-6j0H3XduxHcDAyiA1wzfFgf00lPByG9l-0-b999b3412a87595047dd2e37feefa5ae)
时才有束缚态解.如能从(3)式求出k的可能取值则相应的能量本征值为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image436.jpg?sign=1739004104-i1eO3oxvZtawCOezGE3NIMRqNP3low7H-0-51e35dc9e590b15baa6fb0874d6cae29)
【此题的详细讨论和解答,可以参阅Landau & Lifashitz,Quantum Mechanics,Non—relativistic Theory,§22,pp65~66】
2.15 设谐振子初态为与基态相同的Gauss波包,但波包中心不在x=0点,而是在点,
(1)计算
(2)讨论波包中心的运动规律,与经典谐振子比较,考虑波包形状(波包宽度Ax)是否随时间改变?试与自由粒子的Gauss波包随时间的演化比较.
【此题的详细讨论和解答可以在《量子力学》,卷Ⅱ,128~131页中找到.】
答:设处于谐振子势中的粒子在初始时刻(t=0)状态为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image441.jpg?sign=1739004104-rgo7JrOH0s4TGRnj4kdWxa4HWchqr5rr-0-55edc3a24a33dba9ab1d8c2f2d3052cb)
即波形与基态波函数θ#0(X)相同,但波包中心不在谐振势的平衡点(X=0),而在X=X#0点.从经典力学观点来看,粒子将围绕平衡点振动.从量子力学来看,这个态就不可能是一个定态(处于定态的粒子,其空间分布概率密度不随时间改变).事实上,它既不再是基态,也不是任何一个能量本征态,而是无限多个能量本征态按一定的权重的相干叠加,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image442.jpg?sign=1739004104-phKDSZIDeAcgG3KA67gApKHD7TdOlnyG-0-fcc0815203da1a650935acabd3c8388d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image443.jpg?sign=1739004104-tRmk1WBOY6CFlOx6g8wR1jcgdTFUothx-0-5fcb76db684acc0d25aa68424ea3eeee)
即
的能量本征态.可以证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image446.jpg?sign=1739004104-ihM2TnEhN8qV3HuU6pOWjFKqTsjzqVhg-0-d800e009438fd8a30201c79633323b9f)
更简单的计算方法是用代数方法,即用平移算符作用于基态波函数θ0(x)而得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image447.jpg?sign=1739004104-31Ua8DFr48xj06gScqHdnGAFzQAjF7Ue-0-8a72b402321381357e5193dce8d1558e)
利用谐振子的升降算符
可以表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image450.jpg?sign=1739004104-NA7k4glrCcA1BegeiBfqp6Cl9CONyowq-0-fce0655b21ce242a474a1c6729c79bce)
于是(无量纲).利用代数恒等式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image452.jpg?sign=1739004104-6JjB1IGm1fUY3OZw0E2mtCruB1GTD1SH-0-22d4ee327bf299c20fa1247a37dd6b31)
式中C=[A,B],并假定[A,C]=[B,C]=0.按照,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image454.jpg?sign=1739004104-S2ag63L25tCyWyyvhyuC3ij9Zwr9xzGU-0-84362db3064b8d75b8931f7ac0719e2d)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image455.jpg?sign=1739004104-5SwtQomm5SbIm9y6lRFJ7O4S1Oyh4NO7-0-2e6efe5cb4486665a8d88259f72ef63f)
与式(3)一致。
按式(2)、(3)及,可得出t时刻的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image457.jpg?sign=1739004104-CbIurYx3cVGBK1P2vdTVei9bDCXDhWQH-0-72e5e5b302ffd08892daa7283a45201d)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image458.jpg?sign=1739004104-ajcRdGYSAhmBVBGTgH6cyqnrt20WaFH8-0-a3d6400fc696bf46e8d4355eb5a8262a)
与
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image459.jpg?sign=1739004104-XIousJjrI4WpSKJAP2Pm4U0KrRj8QN7M-0-134828d8b1fc5d066dcac8aa06ab824f)
相比,可见是一个围绕x=0点振荡的Gauss波包,波形不变(波包不扩散),波包中心位置在
处.与经典振子(初位置在X=x#0处)的振动规律完全相同.所以相干态是一个最理想的准经典态.
2.16 对于一维粒子,证明:使坐标与动量不确定度之积取最小值的波包必为Gauss型波包
。
【详细证明见,L.I.Schiff,Quantum Mechanics,(第3版)61~62页.】