![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739006843-XYxa8dVJGryy0rks5zHIHy8C5PhlzO5v-0-91ec12f77f1b37d26b3719b13518a4c6)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739006843-keTCOIx1VIkfYFVxt4kIWoYHfLYEUBQ5-0-b4ece59be06438718b225d5161fffb98)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739006843-ux1oqAqzljWGXdDV2s2bSEWvu9ABIZLu-0-4a831ccece613111a11c735f618e364e)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739006843-NiXsJiA9eWsu2UlbBoa9MQjyf3GPnXsa-0-2c31ee3ae0385de580a2f9c4de22f68c)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739006843-8BmEmYElRqM3nBCeZ46gLUCWboWzd1XC-0-b279d07113bf76d351e7ad08316e6233)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739006843-TAKbnXchWPOWInwxQHsGBsgcYFRRLYDK-0-436c99f6a960251ca88c846d456e1659)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739006843-WE3FBIiWcug4S4pLq60V7Ko37zU4SCtl-0-16b54c155107ebb459c3c4b61cb124be)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739006843-weZvar82qOmG5Ax9xycun41dYjpQfnSK-0-dcf4d8b9c6a70158eed1b7960494f097)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739006843-GlGMYYeLYEZ0kPhJI0S1gvsl2ciqUTpE-0-bc7cd84f59310b99399bf9e61033a2ac)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739006843-C3CNqAUjYY8qWfCTri0xCaH99s8cKR1X-0-e50a6d1cce70dfc7d056f006dc01b519)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739006843-QHEn95yakGlBhbtD5iSnmsHVHfvJPGSx-0-ff4c7c8803bb1de992f3adacdd5f08a4)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739006843-Vm79LugsitguyyLkgV1HpzYptQhMrZcu-0-1c9d8f0dedc4e75155934c5956740838)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739006843-WmvXcxFWniNeGQC61zBNnhUfGjaIwvU8-0-832147b5fbd3168ceb17ea2bb0e40192)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739006843-xpUwnfZU8pz6xl8GLZhV4Mqf3haAwFuA-0-bb8ba1f9dfc3203d0c7aff6bcaf6ca63)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739006843-caVQdWwcgD6LVRDi56EcV1NeyN7zOvPR-0-c361e338652a9cfd0bb3bc43ce53a047)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739006843-TmGhQWWLrusvyEjphVHxJixS3OdVhxi5-0-60419e4098ba5d761a5cc541bbecb04d)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739006843-Dh3uOc74DKU7k6dwyTU9Z8szA4bZQauK-0-d0d2511d96e30fe6032e44ffc957c719)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739006843-QkP2AlWjUrTE73rBl3bFWbxMQoyr10Fm-0-c6b6ff5101ff76f26acebcea59dadbda)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739006843-hOis1xYw0q3THcuhHUEDyzbW8RbVZ3SB-0-0cb14d392f76eeeb3ead5268727da3aa)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739006843-olIw0lx9l5JUyXAYkixWre4UlaxJA2q0-0-c821da20b24718dc6ec3d04ba7318687)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739006843-30Bvcmnt61vWq9oolc759Am1bVG3Qt3Z-0-111466e9953f30a7d3c722a4f3f65094)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739006843-UYk47BrySoExNwvCzYaMQdDMFeEgQfuQ-0-f43ef5606407515b3cf30935c0365bba)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739006843-pDuQQ73RTcTn1uj8aFJOsQ6l311IYQJ8-0-1000709ae8bd7706308fb1d1363fb4b1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739006843-FsGBCNHKgh04mCQJSyn6HOKsB1GempFI-0-cefb2eab2d59cbb768a3ad4a26d4b54a)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739006843-1HbqSEbdCIZ1ChyTBpbdn21Rb1eqjMqz-0-985850f35c6e0cf3289ad5952e71abe1)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739006843-EpewIuEc9SEW9w3wYHEwIwKkgbrinViC-0-bf327a501fba49d47a2552999368324e)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739006843-B3PHubYA2ergwCLagwhAcbjb9SNLsuI1-0-d5916bc7cb8b8a5291576e2ed8116eaa)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739006843-cd63grrjv9K3KZtaReASBAD49RAkK15q-0-99b52caf636581cc13e7e45010ee01d2)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739006843-mNx1J9TtCoGAlf3SrTzAgR1NkWdSxoLb-0-3c1cdf40138b92ad9f4e9879ca383658)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739006843-lyl20HqPFC9tMeExrAfKImszB0HCgV0s-0-f33e82d6a53c7e00580836f4aefa080f)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739006843-9OIjTqLUcNIEjYVpIYMFYadiZVbZ7UsU-0-2150eaab26dfd468399bfad9a29ad360)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739006843-mfduOwPdvZmq1igoeFQZusC7T9IDC13K-0-9e3cb0b20196515a4fd137278cb18621)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739006843-j3cotEWnEisqinmWmPhJYqZNnSRO0X7w-0-fdfb2a8bdfcad7842fc7b16a1e175470)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739006843-HxpIaSvbIsEEHh6gNuzGUeSOfZMcEQbJ-0-13e3157f625d8fe45cdccccb118b982a)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739006843-Eh6GT8pFE4fFA40D51XuSsqdnZMIjQ56-0-1a595c2a463648eb526246cf6a66a86e)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739006843-xxFqg7WhdR8JTMbWhq5mxNDovgJnlJIS-0-2643e13fd45e3f47cb972d0ea3b7c637)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739006843-rhuSrASfM1yrQxecdg7JY53884UQaCIX-0-8157a65b465ed5053e7a36bf39e309c8)