上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
是两个s×n矩阵,则s×n矩阵
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
B是一个n×m矩阵
作s×m矩阵
其中,
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
则
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
则
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
s×n矩阵
称为A的转置矩阵,记作A′。
【手工计算例8】 设
则