上QQ阅读APP看书,第一时间看更新
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
例1 求函数y=tanx的导数.
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
例5 设f(x)=x2lnx,求f′(x).