上QQ阅读APP看书,第一时间看更新
2.1.1 引例
1.变速直线运动的瞬时速度
由物理学知道,自由落体运动的方程是
下面确定物体在t0时刻的瞬时速度.
物体从t0时刻到t0+Δt这段时间内下落的距离为
物体在Δt这段时间内的平均速度为
当Δt→0时,的极限就是物体在t0时刻的瞬时速度,即
对于一般的变速直线运动,物体的运动方程为
s=s(t);
下面确定它在t0时刻的瞬时速度.
物体从t0时刻到t0+Δt这段时间间隔内所经过的路程
Δs=s(t0+Δt)-s(t0).
物体在Δt这段时间内的平均速度为
当Δt→0时, 的极限就是物体在t0时刻的瞬时速度,即
2.曲线的切线的斜率
函数y=f(x)的图形一般为一条曲线C,下面来确定曲线C在点M(x0,f(x0))处的切线的斜率.(如图2-1所示)
图2-1
在点M的邻近取一点N(x0+Δx,f(x0+Δx)),则割线MN的斜率为
当点N沿曲线C趋向于点M时,割线MN的极限位置称为曲线C在M点的切线.因此,切线的斜率为
在实际生活中也有很多求变化率的问题,如电流强度,化学反应速度,人口增长率等,以上例子的共同之处在于:
(1)它们的结果都是当自变量的增量趋于零时,函数的增量和自变量的增量的比的极限.
(2)如果不考虑它们的具体意义,它们具有相同的结构形式.
这类问题的解决具有普遍性,因此从中抽象出一个非常重要的数学概念——导数.