1.5.1 极限的四则运算法则
定理1 设limf(x)=A,limg(x)=B,则
(1)lim(f(x)±g(x))=limf(x)±limg(x)=A±B;
(2)lim(f(x)·g(x))=limf(x)·limg(x)=A·B;
(3(这里要求B≠0).
注 (1)定理中的(1)、(2)可推广到有限个函数的情形;
(2)使用极限的四则运算法则的前提是各自的极限都存在.
推论1 设limf(x)存在,c为常数,则
lim[cf(x)]=c[limf(x)].
由推论1知,求极限时,常数可以提到极限记号外.这是因为limc=c.
推论2 设limf1(x),limf2(x),…,limfn(x)都存在,c1,c2,…,cn为常数,则
lim[c1f1(x)+c2f2(x)+…+cnfn(x)]=c1limf1(x)+c2limf2(x)+…+cnlimfn(x).
推论3 设limf1(x),limf2(x),…,limfn(x)都存在,则
lim[f1(x)·f2(x)·…·fn(x)]=limf1(x)·limf2(x)·…·limfn(x).
特别地,若limf(x)存在,而n为正整数,则
lim[f(x)]n=[limf(x)]n.
由推论3知
下面通过一些具体的例子来理解以上法则在极限运算中是如何应用的.
例1 求.
解 由推论1,2,3得
例2 设n次多项式函数Pn(x)=a0xn+a1xn-1+…+an,其中a0,a1,…,an为常数,且a0≠0,对任意x0∈R,证明Pn(x)=Pn(x0).
注 求多项式函数当x→x0时的极限,只要把x0代替多项式函数中的x即可.
例3 求.
解 因为
所以
设有理分式函数
其中,Pm(x)=a0xm+a1xm-1+…+am,Pn(x)=a0xn+a1xn-1+…+an分别表示m次、n次多项式.
如果Pn(x0)≠0,则
如果Pn(x0)=0,那么关于商的极限的运算法则就不适用了,下面通过“消去零因子法”求这种情形的函数的极限.
例4 求
解 当x→1时,分子、分母的极限都是零,在这里函数商的极限的运算法则不能直接使用.因分子、分母有公因子x-1,当x→1时,x≠1,x-1≠0,可以约去这个不为零的公因子,所以
例5 求.
解 因为当时,分子、分母的极限都是零,所以先对分式进行化简,有
当x→时,sinx-cosx=-(cosx-sinx)≠0,可以约去(cosx-sinx)这个不为零的公因子,所以
例6 求.
解 当x→-1时均趋于∞,在这里函数差的极限运算法则不能直接使用,先将差式通分,再化简,得
因分子、分母有公因子x+1,当x→-1时,x≠-1,x+1≠0,可以约去这个不为零的公因子,所以
解 因为当x→0时,分子、分母的极限都是零,所以先对分式进行分子有理化,则
因分子、分母有公因子x,当x→0时,x≠0,可以约去这个不为零的公因子,所以
解 因为当x→4时,分子、分母的极限都是0,所以先对分式进行分子、分母有理化,再化简,得
例9 设,求b,c.
解 当x→1时,x2-1→0,则,即
3x2+bx+c=(x-1)(3x+a)
式中,a为未知常数.
将上式代入原极限得
由此可得a=1,则,所以b=-2,c=-1.
例10 求.
解 当x→∞时,分子、分母都趋向于∞(即极限都不存在),故不能直接应用函数商的极限的运算法则.这里分子、分母同除以变化最快的一项,即最高次幂x3(“抓大头”),得
例11 求.
解 将分子、分母同除以它们的最高次幂x3,得
例12 求.
解 应用例11的结果,当x→∞时,函数的极限为零,所以其倒数的极限应为∞,即
例10、例11、例12是下式的一般情形,即当a0≠0,b0≠0,m和n为非负整数时有
例13 已知,则a,b应为何值?
由式(1.5.1)知,分子、分母中x的最高次数应该相同,且x的最高次幂的系数应该相等,故1-a=0,b-a=1,解得a=1,b=2.
例14 求.
解 当n→∞时,分子、分母都趋向于∞,将分子、分母同除以3n+1,得
当n→∞时,均趋于0,故