Greenplum:从大数据战略到实现
上QQ阅读APP看书,第一时间看更新

2.2 大数据和AI:企业未来的终极竞争点

Gartner发布的2019年十大战略性技术趋势的前三项包括自主设备、增强分析和AI驱动的开发。虽然这三个趋势看上去不尽相同,但仔细分析,它们的交集就是大数据。自主设备是AI应用的体现,现在热门的自主设备包括机器人、无人机和自动驾驶汽车等,它们都建立在AI模型之上;AI驱动的开发是指企业高阶应用融合了AI模型,应用的开发是软件开发人员和数据科学家(Data Scientist)不断交互的过程。软件开发人员负责数字化应用的迭代开发,而数据科学家负责AI模型的迭代开发。根据第1章的讨论,大数据的使用对于所有AI模型的成功都是一个极其重要的因素。所以,对于企业而言,建立一个全局性的大数据战略是在数字化世界占据一席之地的必要条件。这就像建立健康的生活习惯,虽然效果无法在一朝一夕显现出来,但长远来看一定是大有益处的。

设想在20年以后,所有企业都完成了数字化转型,建立了数字化基础设施,数据的协作方式也更加合理。那时,企业核心能力就建立在高阶数据分析能力或者创建更加精准的AI模型的能力上。

仍以我们熟悉的汽车和金融行业为例。在汽车行业,面对无人驾驶,用户不再图新鲜感,而是要切实地比较安全性。这时,即使一个车企的安全系数比另一个车企高一点点,就可能获得极大的优势。而在智能养护方面,汽车保养的报警误报率下降一点点就可能令车企占据市场先机。作为一个客运公司,能够第一时间满足用户的用车请求将成为企业的核心竞争力,调度算法不仅要在调度请求进来以后发挥作用,更要根据人群的密集度实时调配自己的车队。

金融行业在大数据和AI方面的竞争其实早就广泛展开了。对金融企业来说,由于各种投资机会稍纵即逝,因此券商和投行很早就有雇佣大量物理、数学博士作为量化分析师(Quant)的习惯。现在,通过大数据和AI,金融企业可以利用金融模型时刻计算各个公开市场资产的投资机会,获得更多收益。大数据和AI也在影响传统银行业务,例如小额贷款业务。传统的商业银行一般提供固定利息来吸引储户存款,然后利用和大企业的关系获取将贷款投资给对方的机会,并从中获益。在吸引用户储蓄方面,传统的商业银行能够成功主要是政府担保,例如在美国主要是FDIC担保。在贷款方面,传统的商业银行一般有专员进行风险评估。这种人力审核成本对于大额贷款是可以接受的,但是对于小额贷款而言是无法承受的。所以,中小企业或者个体工商户要获得传统商业银行的贷款是非常困难的,反而是存储有大量用户交易、购物和社交数据的互联网企业,通过利用大数据和机器学习模型,很容易对小额用户贷款请求进行风险评估,进而快速放款投资。另外,随着知识密集企业的兴起,传统的资产抵押融资慢慢转变为股权融资,大量的私募投资的兴起,也给商业银行获得储蓄带来挑战。大型的私募基金通常有大量的行业分析师,他们逐步建立起一个行业知识系统,对于股权融资企业的风险模型构建得越发精准。作者也曾给一些商业银行提过战略建议,建议它们围绕现有的用户(存方和贷方)数据的动态来外推那些需要股权融资的企业的风险分数,从而获得低风险投资机会,在投资有效的情况下募资也必然容易。本质上说,金融机构的主要职责是资源分配,它要获得竞争优势,势必要从上游获取资金机会并从下游获得投资机会。根据现有的用户数据,做出精度高于竞争对手的模型就可以更好地捕捉这些机会。国内不少知名的商业银行已经认识到数字化、大数据和AI带来的机会,纷纷成立科技公司从事小额贷款和私募市场投资业务。

汽车行业和金融行业因为在数字化的过程中积极建立大数据和AI战略,提供更好的产品和用户体验而为人们津津乐道。读者不妨对比一下10年前汽车没有导航和金融业没有网上银行的体验。建立在大数据和AI之上的创新是真正的技术提供生产力的代表,它带来了更多、更加公平的红利。在数字化出现之前,很多企业和个人通过信息垄断获得套利。就像荧幕上塑造的传统西方银行家的形象:一边说服VIP客户存钱,一边与VIP客户社交以获取项目投资机会。虽然我们认为这些商人通过投机取巧获得财富是不公平的,但从通过信息流动达到资源优化配置的角度上来说,这种做法似乎无可厚非。深究一下,这里的不公平实际上来自于信息获取的不对等,因为这些商人利用掌握的信息为己牟利,而非创造更好的模型来为投资方和贷款方提供更好的服务。随着数字化程度的加深,信息获取、流通和使用将不断改善,企业获得的数据更多地被提供给数据科学家用于改善企业的服务。这就是Eric Schmit在《How Google Works》一书中提到的:“以前在离交易越近的地方获取的报酬越多,现在慢慢转变为离产品越近的人获取的报酬更多。”因为前者的优势建立在信息垄断上,后者的优势建立在信息的处理和再加工上。