参考文献
[1] Pérez K, Mazeau K. Polysaccharides, structure and functional versatilith [M]. New York: Marcel Dekker, 2005.
[2] Park S, Baker J O, Himme M E, Parilla P A, David K J. Cellulose crystallinity index:measurement techniques and their impact on interpreting cellulade performance [J]. Biotechnology for Biofuels,2010,3.
[3] 裴继诚. 植物纤维化学[M]. 北京:中国轻工业出版社,2016.
[4] 李忠正. 植物纤维资源化学[M]. 北京:中国轻工业出版社,2012.
[5] 詹怀宇. 制浆原理与工程[M]. 北京:中国轻工业出版社,2009.
[6] 裴继诚. 植物纤维化学 [M]. 北京:中国轻工业出版社,2012.
[7] Stewart D. Lignin as a base material for materials applications:chemistry, application and economics[J]. Industrial Crops and Products,2008, 27(2):202-207.
[8] Pandey M P, Kim, C S. Lignin depolymerization and conversion:a review of thermochemical methods [J]. Chemical Engineering and Technology,2011, 34(1):29-41.
[9] Himmel M E, Ding S Y, Johnson D K, Adney W S, NimLos M R, Brady J W, Foust T D. Biomass recalcitrance: engineering plants and enzymes for biofuels production [J]. Science, 2015, 315(5813):804-807.
[10] Fredenberg K, HarKin J M. Models for the linkage of lignin to carbohydrates. Chemische Berichte,1960, 93:2814-2819.
[11] Fredenberg K, Grlon G. Contribution to the mechanism of formation of lignin and of the lignin-carbohydrate bond[J]. Chemische Berichte,1959,92:1355-1363.
[12] Brownell H, Wes K. The nature of the lignin-carbohydrate bond in wood: fractionation of ball-milled wood, solubilized with ethylene oxide [J]. Pulp and Paper Magzine, Canada, 1961, 62:374-384.
[13] Fengel D, Gerd W. Wood: chemistry, ultrastructure, reactions [M]. Walter de Gruyter, 1983.
[14] Koshijima T, Watanabe T. Association between lignin and carbohydrates in wood and other plant tissues [M]. Springer, 2003.
[15] Shevchenko S M, Bailey G W. The mystery of the lignin-carbohydrate complex: a computational approach [J].Journal of Molecular Structure-Theochem,1996, 364(2): 197-208.
[16] 孙润仓, 许凤. 农林生物质组分分离及高值化利用. 生物产业技术,2008, 1:46-52.
[17] Min D, Li Q, Chiang V, Jameel H, Chang H M, Lucia L. The influence of lignin-carbohydrate complexes on the cellulase-mediated saccharification I: Transgenic black cottonwood (western balsam poplar, California poplar) P. trichocarpa including the xylan down-regulated and the lignin down-regulated lines [J]. Fuel,2014, 119:207-213.
[18] Xu Z, Wang Q H, Jiang Z H. Enzymatic hydrolysis of pretreated soybean straw [J]. Biomass and Bioenergy,2007, 31:162-167.
[19] Gong C S, Cao N J, Du J. Ethanol Production from renewabler resources [J]. Advances in Biochemical Engineering and Biotechnology,1999, 65:207-241.
[20] Mosier N , Wyman, C, Dale B, Elander R, Lee Y Y Holtzapple M, Ladischa M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2005, 96:673-686.
[21] Mais U, Esteghlalian A R, Saddler J N, Mansfield S D. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling [J]. Applied Biochemistry and Biotechnology,2002, 98:815-832.
[22] Muller C D, Abu-Orf M, Novak, J. T. Application of mechanical shear in an internal-recycle for the enhancement of mesophilic anaerobic digestion [J]. Water Environment Research, 2007, 79:297-304.
[23] Fan L T, Lee Y, Beardmore D H. Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis [J]. Biotechnology and Bioengineering,1980, 22(1):177-199.
[24] Caufield D F, Moore W E. Effect of varying crystallinity of cellulose on enzymic hydrolysis [J]. Wood Science,1974, 6(4):375-379.
[25] Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. Ⅱ: Inhibitors and mechanisms of inhibition [J]. Bioresource Technology,2000, 74(1):25-33.
[26] Avci A, Saha B C, Kennedy G J, Cotta M A. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresource Technology,2013, 142:312-319.
[27] Silverstein R A, Chen Y, Sharma-Shivappa R R. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks [J]. Bioresource Technology,2007, 98(16):3000-3011.
[28] Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production [J]. Process Biochemistry. 2007, 42(7), 1135-1139.
[29] 曲音波. 木质纤维素降解酶与生物炼制 [M]. 北京:化学工业出版社,2011.
[30] Aziz S, Sarkanen K. Organosolv pulping-a review [J]. Tappi Journal,1989, 72(3):169-175.
[31] Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities and perspectives [J]. International Journal of Biological Sciences,2009, 5(6):578-595.
[32] Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with pleurotus ostreatus for enzymatic hydrolysis of rice straw [J]. Journal of Bioscience and Bioengineering,2005, 100(6):637-643.
[33] Alvira P, Tomás-Pejó E, Ballesteros M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review [J]. Bioresource Technology,2010, 101(13):4851-4861.
[34] Zabihi S, Alinia R, Esmaeilzadeh F. Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production [J]. Biosystems engineering,2010, 105(3):288-297.
[35] Martín C, Klinke H B, Thomsena A B. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse [J]. Enzyme and Microbial Technology,2007, 40(3):426-432.
[36] 赵颖, 丁明, 赵辅昆. 福寿螺多功能纤维素酶(EGXA)的结构功能研究 [J]. 浙江理工大学学报,2008 (25)5:535-538.
[37] Han S T, Yoo Y J, Kang H S. Charcterization of a bifunctional cellulase and its structural gene [J]. Journal of Biological Chemistry,1995, 270(43):26012-26019.
[38] Nogawa M, Goto M, Okada H. L-Sorbose induces cellulose gene transcription in the cellulolytic fungus Tichoderma reesei [J]. Current Genetics,2001, 38(6):329-334.
[39] Gamauf C, Metz B, Seiboth B. Degradation of Plant Cell Wall Polymers by Fungi [M]. Springer Berlin Heidelberg, 2007.
[40] Lynd L R, Weimer P J,Van Zyl W H, Pretorius I S. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and molecular biology rewiews,2002,66(3):506-577.
[41] Shoemaker S, Schweickart V, Ladner M. Molecular cloning of exo-cellobiohydrolase derived fromTrichoderma reesei L27 [J]. Nature Biotechnology,1983, 1:691-696.
[42] Chen C M, Gritzali M, Stafford D W. Nucleotide sequence and deduced primary structure of cellobiohydrolase of Trichoderma reesei[J]. Nature Biotechnology,1987, 5:274-278.
[43] Penttilä M, Lehtovaara P, Nevalainen, H. Homology between cellulose genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase gene [J]. Gene,1986, 45:253-263.
[44] Saloheimo M, Lehtovaara P, Penttilä M EG.A new endoglucanase from Trichoderma reesei; the characterization of both gene and enzyme [J]. Gene,1988, 63:11-21.
[45] 林建国,王常高,王伟平.不同诱变方法提高绿色木霉产纤维素酶的研究 [J]. 安徽农学通报,2008, 14(14):134-139.
[46] Adsul M G,Bastawde K B,Varma A J,Gokhale D V.Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production [J]. Bioresource Technology,2007, 98:1467-1473.
[47] Chandra M, Gutiérrez-López M D. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases [J]. Bioresource Technology,2009, 100:1659-1662.
[48] Krisztina K, Megyeri L, Szakacs, G.Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow [J]. Enzyme and Microbial Technology,2008 (43):48-55.
[49] Prabavathy V, Mathivanan N, Sagadevan E.Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei[J]. Enzyme and Microbial Technology,2006(38):719-723.
[50] Dillon A, Camassola M, Henriques J.Generation of recombinants stains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum[J]. Enzyme and Microbial Technology,2008,43(6):403-409.
[51] Nogawa M,Goto M, Okada H.L-Sorbose induces cellulase gene transcrip tion in the cellulolytic fungus Trichoderma reesei [J]. Current Genetics,2001, 38:329-334.
[52] Karlsson J, Saloheimo M, Siika-Aho M.Homologous expression and characterization of Cel61A (EGIV) of Trichoderma reesei[J]. European Journal of Biochemistry,2001, 268:6498-6507.
[53] 陈新爱, 夏黎明, 岑沛霖. 里氏木霉纤维二糖酶BGⅢ基因的cDNA 克隆及其在大肠杆菌中的表达 [J]. 菌物系统,2002, 2(2):223-227.
[54] Haan R,Mcbride J, Grange D. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol [J]. Enzyme and Microbial Technology,2007, 40:1291-1299.
[55] 肖志壮, 王婷, 汪天虹, 曲音波, 高培基. 瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达. 微生物学报,2001, 41(4):391-396.
[56] 丁新丽, 汪天虹, 张光涛, 卢翌. 瑞氏木霉纤维素酶基因在酿酒酵母中的表达研究. 酿酒科技,2005, 9:28-30.
[57] 刘北东, 杨谦, 周麒. 绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达 [J]. 北京林业大学学报, 2004, 26(6):71-75.
[58] 刘北东, 杨谦, 周麒. 绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达 [J]. 环境科学, 2004, 5(25):127-132.
[59] 张梁, 石贵阳, 王正祥, 章克昌. 酿酒酵母GPD1 中整合表达纤维二糖酶基因用于纤维素酒精发酵的研究. 西北农林科技大学学报(自然科学版),2006, 10(34):164-170.
[60] Wen Z, Liao W, Chen S. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure [J]. Process Biochemistry, 2005, 40:3087-3094.
[61] Kumar R, Singh R. Semi- solid- state fermentation of eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164 [J]. Applied Biochemistry and Biotechnology, 2001, 96(1):71-82.
[62] 涂璇, 薛泉宏, 司美茹. 多元混菌发酵对纤维素酶活性的影响[J]. 工业微生物,2004, 1(34):30-34.
[63] 夏黎明, 代淑梅, 岑沛霖. 应用固定化里氏木霉糖化玉米秆纤维素的研究[J]. 微生物学报,1998,2(38):114-119.
[64] Hideno A,Ogbonna J C, Aoyagi H, Tanakaetal H. Acetylation of loofa (luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase [J]. Journal of bioscience and bioengineering,2007,4(103):311-317.
[65] Domingues F C, Queiroz J A, Cabral J M, Fonseca L P. The influence of culture conditions on mycelial structure and cellulase [J]. Enzyme and Microbial Technology, 2000, 26:394-401.
[66] Wayman M, Chen S. Cellulase production by Trichoderma reesei using whole wheat flour as a carbon source [J]. Enzyme and Microbial Technology,1992, 14:825-831.
[67] Chen S. Wayman M. Use of sorbose to enhance cellobiase activity in a Trichoderma reesei cellulase system produced on wheat hydrolysate [J]. Biotechnology techniques,1993, 7:345-350.
[68] Fang X, Yano S, Inoue H.Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus [J].Journal of Bioscience and Bioengineering,2008, 2(106):115-120.
[69] Martins L, Kolling D, Camassola M. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates [J]. Bioresource Technology,2008, 99:1417-1424.
[70] Berlin A, Balakshin M, Gikes N, Kadla J, Maximenko V, Kubo S, Saddler J. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparation [J]. Journal of Biotechnology,2006, 125:198-209.
[71] Juhász T, Szengyel Z, Réczey K,Siika-Aho, M., Viikari, L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources [J]. Process Biochemistry,2005, 40:3519-3525.
[72] Xia L M., Shen X L. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue [J]. Bioresource Technology,2004, 91:259-262.
[73] Elisashvili V, Penninckx M., Kachlishvili E., Asatiania M., Kvesitadzea G. Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peel and tree leaves [J]. Enzyme and Microbial Technology, 2006, 38:998-1004.
[74] Juhász T, Szengyel Z, Réczey K. Effect of pH on cellulase production of Trichoderma reesei RUT C30 [J]. Applied Biochemistry and Biotechnology,2004:113-116.
[75] Juhász T, Egyházi A, Réczey K. β-Glucosidase production by Trichoderma reesei. Applied Biochemistry and Biotechnology,2005:121-124, 243-254.
[76] Hayward T, Hamilton J, Mcmillan J. Improvements in Titer, Productivity, and yield using solka-floc for cellulase production[J]. Applied Biochemistry and Biotechnology,2000:84-86.
[77] Schell D, Farmer J, Hamilton J. Influence of operating conditions and vessel size on oxygen transfer during cellulase production[J]. Applied Biochemistry and Biotechnology,2001: 91-93.
[78] 杭志喜. 溶解氧对里氏木霉产纤维素酶的作用与控制 [D]. 南京:南京林业大学博士学位论文,2008.
[79] Gao J, Weng H, Zhu, D. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11under solid-state cultivation of corn stover [J]. Bioresource Technology,2008, 99:7623-7629.
[80] Singhania, R., Sukumaran, R., Pandey, A. Improved cellulose production by Trichoderma reesei RUT C30 under SSF through process optimization [J]. Applied Biochemistry and Biotechnology, 2007,142:60-70.
[81] Liu J, Yuan X, Chen S. Effect of biosurfactant on cellulase and xylanase production by trichoderma viride in solid substrate fermentation [J]. Process biochemistry,2006, 41(11):2347-2351.
[82] 陈洪章, 李佐虎. 固态发酵新技术及其反应器的研制[J]. 化工进展,2002, 21(1):37-39.
[83] 徐福建, 陈洪章, 李佐虎. 纤维素酶气相双动态固态发酵[J]. 环境科学,2002, 23(3):53-58.
[84] Ryu D D Y, Mandels M. Cellulase complex: Biosynthesis and applications[J]. Enzyme and Microbial Technology,1980, 2: 91-102.
[85] Watson T G, Nelligan I, Lessing L. Cellulase production by Trichoderma reesei(Rut-C30) in fed-batch cultures [J]. Biotechnology,1984, 6:667-672.
[86] Amouri B, Gargouri A. Characterization of a novel β-glucosidase from a Stachybotrys strain[J]. Biochemical Engineering Journal,2006, 32: 191-197.
[87] Linder M, Teeri T. The roles and function of cellulose-binding domains [J]. Journal of Biotechnology. 1997, 57:15-28.
[88] Tomme P,Van Tilbeurgh H, Peterson G. Studies of the Cellulolytic System of Trichoderma Reesei Qm9414-Analysis of Domain Function in 2 Cellobiohydrolases by Limited Proteolysis [J]. European Journal of Biochemistry,1988, 170(3):575-581.
[89] 王丹. 植物纤维资源生物转化制取乙醇过程模型及模拟[D].南京:南京林业大学博士论文,2003.
[90] Steele B, Ra, S, Nghiem J. Enzyme Recovery and Recycling Following Hydrolysis of Ammonia Fiber Explosion-Treated Corn Stover [J]. Applied Biochemistry and Biotechnology, 2005:121-124, 901-910.
[91] Palonen H, Tjerneld F, Zacchi G. Adsorption of Trichoderma reesei CBHⅠ and EGⅡ and their catalytic domains on steam pretreated softwood and isolated lignin [J]. Journal of Biotechnology,2004, 107(1):65-72.
[92] Reese E T. Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores [J]. Biochimica Et Biophysica Acta,1977, 499(1):10-23.
[93] Puls J, Wood T. The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms [J]. Bioresource Technology,1991, 36:15-19.
[94] Goyal A, Ghosh B, Eveleigh D. Characteristics of fungal cellulases [J]. Bioresource Technology,1991, 36:31-50.
[95] Kumar P, Barrett D M, Delwiche, M. J., Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial & Engineering Chemistry Research,2009, 48:3713-3729.
[96] Battista, O. A. Hydrolysis and crystallization of cellulose [J].Industrial & Engineering Chemistry,1950, 43(2):502-507.
[97] Zhang Y H P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems [J]. Biotechnology and Bioengineering,2004, 88:797-824.
[98] Laureano-Perez L, Teymouri F, Alizadeh H, Dale B E. Understanding factors that limit enzymatic hydrolysis of biomass [J]. Applied Biochemistry and Biotechnology, 2005,124(1~3):1081-1099.
[99] Arantes V, Saddler J N. Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis [J]. Biotechnology for Biofuels, 2010, 3:4.
[100] Rollin J A, Zhu Z, Sathitsuksanoh N, Zhang Y H P. Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation andsoaking in aqueous ammonia [J]. Biotechnology and Bioengineering,2011,108(1):22-30.
[101] Köhnke T, Östlund Å, Brelid H. Adsorption of arabinoxylan on cellulosic surfaces:influence of degree of substitution and substitution pattern on adsorption characteristics [J]. Biomacromolecules,2010, 12(7):2633-2641.
[102] Mazeau K, Charlier L. The molecular basis of the adsorption of xylans on cellulose surface [J]. Cellulose,2012. 19(2):337-349.
[103] Lan T Q, Lou H M, Zhu J. Y. Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2[J]. Bioenergy Research,2013, 6:476-485.
[104] Nakagame S, Chandra R P, Kadla J F, Saddler J N. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology and Bioengineering,2011, 108:538-548.
[105] Palonen H, Tjerneld F, Zacchi G, Tenkanen M. Adsorption of Trichoderma reesei CBH Ⅰ and EG Ⅱ and their catalytic domains on steam pretreated softwood and isolated lignin[J]. Journal of Biotechnology,2004, 107: 65-72.
[106] 黄爱铃, 周美华. 玉米秸秆酶水解影响因素的研究[J]. 中国资源综合利用. 2004, 8:25-27.
[107] Knutsen J S., Davis R H. Cellulase Retention and Sugar Removal by Membrane Ultrafiltration During Lignocellulosic Biomass Hydrolysis [J]. Applied Biochemistry and Biotechnology,2004:113-116, 585-598.
[108] Ballesteros M, Oliva J M, Negro M J. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875 [J]. Process Biochemistry,2004, 39:1843-1848.
[109] Mozhaev V V, Berezin I V, Martinek K. Structure-stability relationship in proteins-fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology [J]. Critical Reviews in Biochemistry and Molecular Biology,1988, 23(3):235-281.
[110] Zhou J, Wang Y H, Chu J. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments [J]. Bioresource Technology,2009, 100:819-825.
[111] Jing D B, Li P J, Xiong X Z. Optimization of cellulase complex formulation for peashrub biomass hydrolysis [J]. Applied Microbiology and Biotechnology,2007, 75:793-800.
[112] Eriksson T, Börjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocelluloses [J]. Enzyme and Microbial Technology,2002, 31:353-364.
[113] BÖrjesson J, Peterson R, Tjerneld F. Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition [J]. Enzyme and Microbial Technology,2007, 40:754-762.
[114] Zheng Y, Pan Z L, Zhang R H. Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass [J]. Applied Microbiology and Biotechnology,2008, 146:231-248.
[115] Tejirian A, Xu F. Inhibition of Cellulase-catalyzed Lignocellulosic Hydrolysis by Iron and Oxidative Metal Ions and Complexes[J]. Applied & Environmental Microbiology,2010, 76(23):7673-7682.
[116] Liu H, Zhu J Y, Fu S Y. Effect of lignin-metal complexation on enzymatic hydrolysis of cellulose[J]. J. Journal of Agricultural & Food Chemistry, 2010, 58 (12):7233-7238.
[117] Mandels M, Reese E T. Inhibition of cellulases[J]. Annual Review of Phytopathology,1965, 3:85-102.
[118] Ruiz E, Cara C, Manzanares, P. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks [J]. Enzyme and Microbial Technology, 2008, 42:160-166.
[119] SØensen A, Teller P J., HilstrØm, T. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment [J]. Bioresource Technology, 2007, 32:1-6.
[120] Reese E T, Mandes, M. Stability of the cellulase of Trichoderma reesei under use conditions [J]. Biotechnology and Bioengineering, 1980, 22(2):323-335.
[121] Ong E, Gilkes N R, Miller R C. The cellulose-binding domain(Cbdcex) of an exoglucanase from cellulomonas-fimi-production in escherichia-coli and characterization of the polypeptide [J]. Biotechnology and Bioengineering,1993, 42(4): 401-409.
[122] Lee D, Yu A H C, Saddler J N. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates [J]. Biotechnology and Bioengineering, 1995, 45(4):328-336.