神经网络与深度学习:基于TensorFlow框架和Python技术实现
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

前言

继2016年3月击败世界围棋大师李世石,AlphaGo又于2017年5月横扫中国九段棋手柯洁,从此“人工智能”成为最火热的词汇之一,人工智能的应用遍地开花,热度持续高涨,IT领域甚至言必称之。因此,众多有志之士欲投身到人工智能的浪潮之中,但如何快速入门成为摆在他们面前的第一道障碍。

千里之行,始于足下。下面先梳理一下人工智能、机器学习和深度学习的关系。人工智能是宽泛概念上的高级计算智能,机器学习是研究人工智能的一个有效手段,而深度学习是机器学习的一个分支。深度学习突破了传统机器学习算法的瓶颈,推动了人工智能领域的快速发展;而目前大多数深度学习都是通过神经网络来实现的。

工欲善其事,必先利其器。神经网络和深度学习的框架和程序实现语言有很多种。其中,TensorFlow由于其灵活性、高效性和可移植性,成为目前最流行的一种深度学习框架;Python语言由于其简洁性、易读性和可扩展性,已成为目前最受欢迎的深度学习程序设计语言。

本书基于TensorFlow框架和Python语言来实现基本神经网络算法和深度学习算法,主要内容包括:第1章综述人工智能、机器学习和深度学习的基本知识;第2章、第3章介绍Python及其基础库Numpy、Matplotlib和Scipy的使用方法;第4章介绍TensorFlow的基本知识和使用方法;第5章、第6章介绍神经网络的基础知识以及它的基础应用——感知机、线性回归与逻辑回归的理论与实现;第7章、第8章介绍两种热门的深度神经网络——卷积神经网络和循环神经网络的理论与实现。

本书旨在作为一本神经网络与深度学习的入门图书,其主要特点有:

(1)系统性:首先介绍Python、TensorFlow的使用方法,然后介绍基本神经网络的理论及应用,最后介绍深度神经网络的理论及实现,内容由浅入深、循序渐进。

(2)通用性:程序实例采用通用的数值优化和 MNIST 手写字体案例,适合各学科和各领域的人员理解和学习。

(3)实用性:注重理论联系实际,首先进行理论介绍,然后进行程序实现,通过理论介绍来初步了解算法,通过程序实现来深入理解算法。

本书适于电子、通信、计算机、自动化、机器人和经济学等学科以及信号处理、语音识别、图像识别、模式识别、机器翻译和人机交互等领域的读者阅读,既可作为高等院校高年级本科生和研究生的学习用书,也可供相关领域的科研人员学习参考。

为了便于读者学习和参考,书中的实例程序可在华信教育资源网(https://www.hxedu.com.cn/)免费下载,或通过与本书责任编辑(zhangls@phei.com.cn)联系获取。

在本书编写过程中,得到了北京无线电测量研究所科技委、档信中心、总体部以及航天科工二院“创客银行”项目的支持和帮助,电子工业出版社相关编辑为本书的编辑出版付出了辛勤劳动,特此表示感谢。

最后要感谢我的爱人焦淑娟和爱子包佳铭所给予的支持和动力。由于编著者水平有限,书中定有不足之处,诚望各位专家和读者批评指正。联系方式:bao_ziyang@163.com。

编著者

2019年1月