Heroes of the Telegraph
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第79章

bodies, such as carbon; but even the best conductors, such as gold, silver, and other metals. This principle was not a mere variation of electrical conductivity in a mass of material brought about by compression, but a mysterious variation in some unknown way of the strength of an electric current in traversing a loose joint or contact between two conductors. This discovery of Hughes really shed a light on the behaviour of Edison's own transmitter, whose action he had until then misunderstood. It was now seen that the particles of carbon dust in contact which formed the button were a congeries of minute micro-phones. Again it was proved that the diaphragm or tympanum to receive the impression of the sound and convey it to the carbon button, on which Edison had laid considerable stress, was non-essential; for the microphone, pure and simple, was operated by the direct impact of the sonorous waves, and required no tympanum. Moreover, the microphone, as its name implies, could magnify a feeble sound, and render audible the vibrations which would otherwise escape the ear. The discovery of these remarkable and subtle properties of a delicate contact had indeed confronted Edison; he had held them in his grasp, they had stared him in the face, but not-withstanding all his matchless ingenuity and acumen, he, blinded perhaps by a false hypothesis, entirely failed to discern them. The significant proof of it lies in the fact that after the researches of Professor Hughes were published the carbon transmitter was promptly modified, and finally abandoned for practical work as a telephone, in favour of a variety of new transmitters, such as the Blake, now employed in the United Kingdom, in all of which the essential part is a microphone of hard carbon and metal. The button of soot has vanished into the limbo of superseded inventions.

Science appears to show that every physical process is reciprocal, and may be reversed. With this principle in our minds, we need not be surprised that the microphone should not only act as a TRANSMITTER of sounds, but that it should also act as a RECEIVER. Mr. James Blyth, of Edinburgh, was the first to announce that he had heard sounds and even speech given out by a microphone itself when substituted for the telephone. His transmitting microphone and his receiving one were simply jelly-cans filled with cinders from the grate. It then transpired that Professor Hughes had previously obtained the same remarkable effects from his ordinary 'pencil' microphones. The sounds were extremely feeble, however, but the transmitting microphones proved the best articulating ones. Professor Hughes at length constructed an adjustable hammer-and-anvil microphone of gas-carbon, fixed to the top of a resonating drum, which articulated fairly well, although not so perfectly as a Bell telephone. Perhaps a means of improving both the volume and distinctness of the articulation will yet be forthcoming and we may be able to speak solely by the microphone, if it is found desirable. The marvellous fact that a little piece of charcoal can, as it were, both listen and speak, that a person may talk to it so that his friend can hear him at a similar piece a hundred miles away, is a miracle of nineteenth century science which far transcends the oracles of antiquity.

The articulating telephone was the forerunner of the phonograph and microphone, and led to their discovery. They in turn will doubtless lead to other new inventions, which it is now impossible to foresee. We ask in vain for an answer to the question which is upon the lips of every one-What next? The microphone has proved itself highly useful in strengthening the sounds given out by the telephone, and it is probable that we shall soon see those three inventions working unitedly; for the microphone might make the telephone sounds so powerful as to enable them to be printed by phonograph as they are received, and thus a durable record of telephonic messages would be obtained. We can now transmit sound by wire, but it may yet be possible to transmit light, and see by telegraph. We are apparently on the eve of other wonderful inventions, and there are symptoms that before many years a great fundamental discovery will be made, which will elucidate the connection of all the physical forces, and will illumine the very frame-work of Nature.

In 1879, Professor Hughes endowed the scientific world with another beautiful apparatus, his 'induction balance.' Briefly described, it is an arrangement of coils whereby the currents inducted by a primary circuit in the secondary are opposed to each other until they balance, so that a telephone connected in the secondary circuit is quite silent.

Any disturbance of this delicate balance, however, say by the movement of a coil or a metallic body in the neighbourhood of the apparatus, will be at once reported by the induction currents in the telephone. Being sensitive to the presence of minute masses of metal, the apparatus was applied by Professor Graham Bell to indicate the whereabouts of the missing bullet in the frame of President Garfield, as already mentioned, and also by Captain McEvoy to detect the position of submerged torpedoes or lost anchors. Professor Roberts-Austen, the Chemist to the Mint, has also employed it with success in analysing the purity and temper of coins; for, strange to say, the induction is affected as well by the molecular quality as the quantity of the disturbing metal.

Professor Hughes himself has modified it for the purpose of sonometry, and the measurement of the hearing powers.

To the same year, 1879, belong his laborious investigations on current induction, and some ingenious plans for eliminating its effects on telegraph and telephone circuits.