Heroes of the Telegraph
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第27章

Sir William Thomson's siphon recorder, in all its present completeness, must take rank as a masterpiece of invention. As used in the recording or writing in permanent characters of the messages sent through long submarine cables, it is the acknowledged chief of 'receiving instruments,' as those apparatus are called which interpret the electrical condition of the telegraph wire into intelligible signals.

Like other mechanical creations, no doubt its growth in idea and translation into material fact was a step-by-step process of evolution, culminating at last in its great fitness and beauty.

The marvellous development of telegraphy within the last generation has called into existence a great variety of receiving instruments, each admirable in its way. The Hughes, or the Stock Exchange instruments, for instance, print the message in Roman characters; the sounders strike it out on stops or bells of different tone; the needle instruments indicate it by oscillations of their needles; the Morse daubs it in ink on paper, or embosses it by a hard style; while Bain's electro-chemical receiver stains it on chemically prepared paper. The Meyer-Baudot and the Quadruple receive four messages at once and record them separately; while the harmonic telegraph of Elisha Gray can receive as many as eight simultaneously, by means of notes excited by the current in eight separate tuning forks.

But all these instruments have one great drawback for delicate work, and, however suitable they may be for land lines, they are next to useless for long cables. They require a certain definite strength of current to work them, whatever it may be, and in general it is very considerable. Most of the moving parts of the mechanism are comparatively heavy, and unless the current is of the proper strength to move them, the instrument is dumb, while in Bain's the solution requires a certain power of current to decompose it and leave the stain.

In overland lines the current traverses the wire suddenly, like a bullet, and at its full strength, so that if the current be sufficiently strong these instruments will be worked at once, and no time will be lost. But it is quite different on submarine cables. There the current is slow and varying. It travels along the copper wire in the form of a wave or undulation, and is received feebly at first, then gradually rising to its maximum strength, and finally dying away again as slowly as it rose. In the French Atlantic cable no current can be detected by the most delicate galvanoscope at America for the first tenth of a second after it has been put on at Brest; and it takes about half a second for the received current to reach its maximum value. This is owing to the phenomenon of induction, very important in submarine cables, but almost entirely absent in land lines. In submarine cables, as is well known, the copper wire which conveys the current is insulated from the sea-water by an envelope, usually of gutta-percha. Now the electricity sent into this wire INDUCES electricity of an opposite kind to itself in the sea-water outside, and the attraction set up between these two kinds 'holds back' the current in the wire, and retards its passage to the receiving station.

It follows, that with a receiving instrument set to indicate a particular strength of current, the rate of signalling would be very slow on long cables compared to land lines; and that a different form of instrument is required for cable work. This fact stood greatly in the way of early cable enterprise. Sir William (then Professor) Thomson first solved the difficulty by his invention of the 'mirror galvanometer,' and rendered at the same time the first Atlantic cable company a commercial success. The merit of this receiving instrument is, that it indicates with extreme sensibility all the variations of the current in the cable, so that, instead of having to wait until each signal wave sent into the cable has travelled to the receiving end before sending another, a series of waves may be sent after each other in rapid succession. These waves, encroaching upon each other, will coalesce at their bases; but if the crests remain separate, the delicate decipherer at the other end will take cognisance of them and make them known to the eye as the distinct signals of the message.

The mirror galvanometer is at once beautifully simple and exquisitely scientific. It consists of a very long fine coil of silk-covered copper wire, and in the heart of the coil, within a little air-chamber, a small round mirror, having four tiny magnets cemented to its back, is hung, by a single fibre of floss silk no thicker than a spider's line. The mirror is of film glass silvered, the magnets of hair-spring, and both together sometimes weigh only one-tenth of a grain. A beam of light is thrown from a lamp upon the mirror, and reflected by it upon a white screen or scale a few feet distant, where it forms a bright spot of light.

When there is no current on the instrument, the spot of light remains stationary at the zero position on the screen; but the instant a current traverses the long wire of the coil, the suspended magnets twist themselves horizontally out of their former position, the mirror is of course inclined with them, and the beam of light is deflected along the screen to one side or the other, according to the nature of the current.

If a POSITIVE current--that is to say, a current from the copper pole of the battery--gives a deflection to the RIGHT of zero, a NEGATIVEcurrent, or a current from the zinc pole of the battery, will give a deflection to the left of zero, and VICE VERSA.

The air in the little chamber surrounding the mirror is compressed at will, so as to act like a cushion, and 'deaden' the movements of the mirror. The needle is thus prevented from idly swinging about at each deflection, and the separate signals are rendered abrupt and 'dead beat,' as it is called.