更新时间:2024-08-22 11:17:20
封面
版权信息
内容简介
前言
第1章 AIGC概述
1.1 AIGC的主要技术
1.1.1 语言生成方面的技术
1.1.2 视觉生成方面的技术
1.1.3 多模态方面的技术
1.2 生成模型与判别模型
1.2.1 生成模型
1.2.2 判别模型
1.3 生成模型的原理
1.3.1 生成模型的框架
1.3.2 生成模型的概率表示
1.3.3 生成模型的目标函数
1.3.4 生成模型的挑战及解决方法
1.4 表示学习
1.4.1 表示学习的直观理解
1.4.2 表示学习的常用方式
1.4.3 表示学习与特征工程的区别
1.4.4 图像的表示学习
1.4.5 文本的表示学习
1.4.6 多模态的表示学习
1.4.7 表示学习的融合技术
1.4.8 如何衡量表示学习的优劣
1.5 表示学习的逆过程
第2章 深度神经网络
2.1 用PyTorch构建深度神经网络
2.1.1 神经网络的核心组件
2.1.2 构建神经网络的主要工具
2.1.3 构建模型
2.1.4 训练模型
2.2 用PyTorch实现神经网络实例
2.2.1 准备数据
2.2.2 可视化源数据
2.2.3 构建模型
2.2.4 训练模型
2.3 用PyTorch Lightning实现神经网络实例
2.4 构建卷积神经网络
2.4.1 全连接层
2.4.2 卷积层
2.4.3 卷积核
2.4.4 步幅
2.4.5 填充
2.4.6 多通道上的卷积
2.4.7 激活函数
2.4.8 卷积函数
2.4.9 转置卷积
2.4.10 特征图与感受野
2.4.11 卷积层如何保留图像的空间信息
2.4.12 现代经典网络
2.4.13 可变形卷积
2.5 构建循环神经网络
2.5.1 从神经网络到有隐含状态的循环神经网络
2.5.2 使用循环神经网络构建语言模型
2.5.3 多层循环神经网络
2.5.4 现代经典循环神经网络
2.6 迁移学习
2.6.1 迁移学习简介
2.6.2 微调预训练模型
2.7 深度学习常用的归一化方法
2.7.1 归一化方法简介
2.7.2 归一化的原理
2.7.3 归一化的代码实现
2.8 权重初始化
2.8.1 为何要进行权重初始化
2.8.2 权重初始化方法
2.9 PyTorch常用的损失函数
2.10 深度学习常用的优化算法
2.10.1 传统梯度更新算法
2.10.2 批量随机梯度下降法
2.10.3 动量算法
2.10.4 Nesterov动量算法
2.10.5 AdaGrad算法
2.10.6 RMSProp算法
2.10.7 Adam算法
2.10.8 各种优化算法比较
第3章 变分自编码器
3.1 自编码器简介
3.1.1 构建自编码器
3.1.2 构建编码器
3.1.3 构建解码器
3.1.4 定义损失函数及优化器
3.1.5 分析自编码器
3.2 变分自编码器简介
3.2.1 变分自编码器的直观理解
3.2.2 变分自编码器的原理
3.3 构建变分自编码器
3.3.1 构建编码器
3.3.2 构建解码器
3.3.3 损失函数
3.3.4 分析变分自编码器
3.4 使用变分自编码器生成面部图像
3.4.1 编码器
3.4.2 解码器
3.4.3 进一步分析变分自编码器
3.4.4 生成新头像
第4章 生成对抗网络
4.1 GAN模型简介