更新时间:2021-10-09 14:32:10
封面
版权信息
前言
第1章 目标检测概述
1.1 什么是目标检测
1.2 典型的应用场景
1.2.1 人脸识别
1.2.2 智慧交通
1.2.3 工业检测
1.3 目标检测技术发展简史
1.3.1 传统算法
1.3.2 深度学习算法
1.4 目标检测领域重要的公开评测集
1.5 本章小结
第2章 目标检测前置技术
2.1 深度学习框架
2.1.1 Theano
2.1.2 TensorFlow
2.1.3 MXNet
2.1.4 Keras
2.1.5 PyTorch
2.1.6 Caffe
2.2 搭建开发环境
2.2.1 Anaconda
2.2.2 Conda
2.2.3 PyTorch的下载与安装
2.3 NumPy使用详解
2.3.1 创建数组
2.3.2 创建NumPy数组
2.3.3 获取NumPy属性
2.3.4 NumPy数组索引
2.3.5 切片
2.3.6 NumPy中的矩阵运算
2.3.7 数据类型转换
2.3.8 NumPy的统计计算方法
2.3.9 NumPy中的arg运算
2.3.10 FancyIndexing
2.3.11 NumPy数组比较
2.4 本章小结
第3章 卷积神经网络
3.1 卷积神经网络基础
3.1.1 全连接层
3.1.2 卷积层
3.1.3 池化层
3.1.4 三维数据的卷积运算
3.1.5 批规范化层
3.1.6 Dropout层
3.2 本章小结
第4章 数据预处理
4.1 数据增强
4.1.1 resize操作
4.1.2 crop操作
4.1.3 随机的水平和竖直翻转
4.1.4 随机角度的旋转
4.1.5 亮度、对比度和颜色的随机变化
4.1.6 彩色图转灰度图
4.2 数据的探索——Kaggle猫狗大战
4.3 本章小结
第5章 常见卷积神经网络结构
5.1 LeNet神经网络
5.2 AlexNet神经网络
5.3 VGGNet神经网络
5.4 GoogLeNet神经网络
5.4.1 inception模块
5.4.2 GoogLeNet的实现
5.4.3 GoogLeNet的演变
5.5 ResNet
5.5.1 残差模块
5.5.2 ResNet模型
5.6 DenseNet
5.7 其他网络结构
5.8 实战案例
5.9 计算图像数据集的RGB均值和方差
5.10 本章小结
第6章 mmdetection工具包介绍
6.1 mmdetection概要
6.2 mmdetection支持的检测框架和算法实现
6.3 搭建mmdetection开发环境
6.4 使用入门
6.4.1 使用预训练模型进行推理
6.4.2 训练模型
6.4.3 有用的工具
6.4.4 如何使用mmdetection
6.5 标注图像
6.6 实战案例
6.6.1 检测人体
6.6.2 检测猫和狗
6.7 本章小结
第7章 目标检测的基本概念
7.1 概念详解
7.1.1 IoU计算
7.1.2 NMS操作
7.1.3 感受野
7.1.4 空洞卷积
7.1.5 评价指标mAP
7.2 本章小结
第8章 两阶段检测方法
8.1 R-CNN算法
8.1.1 生成候选区域
8.1.2 类别判定